MCHC908GR8CFAE Freescale Semiconductor, MCHC908GR8CFAE Datasheet - Page 311

IC MCU FLSH 8BIT8MHZ 7.5K32-LQFP

MCHC908GR8CFAE

Manufacturer Part Number
MCHC908GR8CFAE
Description
IC MCU FLSH 8BIT8MHZ 7.5K32-LQFP
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheets

Specifications of MCHC908GR8CFAE

Core Processor
HC08
Core Size
8-Bit
Speed
8MHz
Connectivity
SCI, SPI
Peripherals
LVD, POR, PWM
Number Of I /o
21
Program Memory Size
7.5KB (7.5K x 8)
Program Memory Type
FLASH
Ram Size
384 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 6x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-LQFP
Controller Family/series
HC08
No. Of I/o's
21
Ram Memory Size
384Byte
Cpu Speed
8MHz
No. Of Timers
2
Embedded Interface Type
I2C, SCI, SPI
Rohs Compliant
Yes
Processor Series
HC08G
Core
HC08
Data Bus Width
8 bit
Data Ram Size
384 B
Interface Type
SCI, SPI
Maximum Clock Frequency
8.2 MHz
Number Of Programmable I/os
21
Number Of Timers
3
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
FSICEBASE, DEMO908GZ60E, M68CBL05CE, M68EML08GPGTE
Minimum Operating Temperature
- 40 C
On-chip Adc
8 bit, 6 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCHC908GR8CFAE
Manufacturer:
FREESCALE
Quantity:
4 500
Part Number:
MCHC908GR8CFAE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MCHC908GR8CFAE
Manufacturer:
FREESCALE
Quantity:
4 500
Company:
Part Number:
MCHC908GR8CFAE
Quantity:
410
Part Number:
MCHC908GR8CFAER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
MC68HC908GR8 — Rev 4.0
MOTOROLA
interrupts share the same CPU interrupt vector. See
not possible to enable MODF or OVRF individually to generate a
receiver/error CPU interrupt request. However, leaving MODFEN low
prevents MODF from being set.
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not,
watch for an overflow condition.
miss an overflow. The first part of
to read the SPSCR and SPDR to clear the SPRF without problems.
However, as illustrated by the second transmission example, the OVRF
bit can be set in between the time that SPSCR and SPDR are read.
In this case, an overflow can be missed easily. Since no more SPRF
interrupts can be generated until this OVRF is serviced, it is not obvious
that bytes are being lost as more transmissions are completed. To
prevent this, either enable the OVRF interrupt or do another read of the
SPSCR following the read of the SPDR. This ensures that the OVRF
was not set before the SPRF was cleared and that future transmissions
can set the SPRF bit.
avoid this second SPSCR read, enable the OVRF to the CPU by setting
the ERRIE bit.
SPSCR
OVRF
READ
READ
SPDR
SPRF
Freescale Semiconductor, Inc.
For More Information On This Product,
1
2
3
4
BYTE 1
BYTE 1 SETS SPRF BIT.
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
CPU READS BYTE 1 IN SPDR,
CLEARING SPRF BIT.
BYTE 2 SETS SPRF BIT.
1
Figure 20-9. Missed Read of Overflow Condition
Serial Peripheral Interface (SPI)
2
Go to: www.freescale.com
3
Figure 20-10
BYTE 2
4
Figure 20-9
Figure 20-9
illustrates this process. Generally, to
BYTE 3
5
5
6
7
8
6
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,
BUT NOT OVRF BIT.
BYTE 4 FAILS TO SET SPRF BIT BECAUSE
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.
7
shows how it is possible to
Serial Peripheral Interface (SPI)
shows how it is possible
BYTE 4
Figure
8
Error Conditions
Technical Data
20-11. It is
311

Related parts for MCHC908GR8CFAE