AT91SAM7X128-CU Atmel, AT91SAM7X128-CU Datasheet - Page 182

no-image

AT91SAM7X128-CU

Manufacturer Part Number
AT91SAM7X128-CU
Description
MCU ARM 128K HS FLASH 100-TFBGA
Manufacturer
Atmel
Series
AT91SAMr
Datasheet

Specifications of AT91SAM7X128-CU

Core Processor
ARM7
Core Size
16/32-Bit
Speed
55MHz
Connectivity
CAN, Ethernet, I²C, SPI, SSC, UART/USART, USB
Peripherals
Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number Of I /o
62
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
32K x 8
Voltage - Supply (vcc/vdd)
1.65 V ~ 1.95 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TFBGA
For Use With
AT91SAM-ICE - EMULATOR FOR AT91 ARM7/ARM9AT91SAM7X-EK - KIT EVAL FOR AT91SAM7X256/128
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7X128-CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128-CU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT91SAM7X128-CU-999
Manufacturer:
Atmel
Quantity:
10 000
25.3
25.4
25.5
182
Processor Clock Controller
USB Clock Controller
Peripheral Clock Controller
AT91SAM7X512/256/128 Preliminary
The PMC features a Processor Clock Controller (PCK) that implements the Processor Idle
Mode. The Processor Clock can be disabled by writing the System Clock Disable Register
(PMC_SCDR). The status of this clock (at least for debug purpose) can be read in the System
Clock Status Register (PMC_SCSR).
The Processor Clock PCK is enabled after a reset and is automatically re-enabled by any
enabled interrupt. The Processor Idle Mode is achieved by disabling the Processor Clock, which
is automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the
product.
When the Processor Clock is disabled, the current instruction is finished before the clock is
stopped, but this does not prevent data transfers from other masters of the system bus.
The USB Source Clock is the PLL output. If using the USB, the user must program the PLL to
generate a 48 MHz, a 96 MHz or a 192 MHz signal with an accuracy of ± 0.25% depending on
the USBDIV bit in CKGR_PLLR.
When the PLL output is stable, i.e., the LOCK bit is set:
Figure 25-2. USB Clock Controller
The Power Management Controller controls the clocks of each embedded peripheral by the way
of the Peripheral Clock Controller. The user can individually enable and disable the Master
Clock on the peripherals by writing into the Peripheral Clock Enable (PMC_PCER) and Periph-
eral Clock Disable (PMC_PCDR) registers. The status of the peripheral clock activity can be
read in the Peripheral Clock Status Register (PMC_PCSR).
When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are
automatically disabled after a reset.
In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data cor-
ruption or erroneous behavior of the system.
• The USB device clock can be enabled by setting the UDP bit in PMC_SCER. To save power
on this peripheral when it is not used, the user can set the UDP bit in PMC_SCDR. The UDP
bit in PMC_SCSR gives the activity of this clock. The USB device port require both the 48
MHz signal and the Master Clock. The Master Clock may be controlled via the Master Clock
Controller.
Source
Clock
USB
USBDIV
Divider
/1,/2,/4
UDP
UDP Clock (UDPCK)
6120H–ATARM–17-Feb-09

Related parts for AT91SAM7X128-CU