MC908QC16CDZE Freescale Semiconductor, MC908QC16CDZE Datasheet - Page 142

IC MCU 8BIT 16K FLASH 28-SOIC

MC908QC16CDZE

Manufacturer Part Number
MC908QC16CDZE
Description
IC MCU 8BIT 16K FLASH 28-SOIC
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheets

Specifications of MC908QC16CDZE

Core Processor
HC08
Core Size
8-Bit
Speed
8MHz
Connectivity
SCI, SPI
Peripherals
LVD, POR, PWM
Number Of I /o
24
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Processor Series
HC08QC
Core
HC08
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
ESCI/SPI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
26
Number Of Timers
6
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
FSICEBASE, M68CBL05AE, DEMO908QB8, DEMO908QC16
Minimum Operating Temperature
- 40 C
On-chip Adc
10-ch x 10-bit
For Use With
DEMO908QC16 - BOARD DEMO FOR MC908QC16
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC908QC16CDZE
Manufacturer:
FREESCALE
Quantity:
1 600
Part Number:
MC908QC16CDZE
Manufacturer:
FREESCALE
Quantity:
5 000
Part Number:
MC908QC16CDZE
Manufacturer:
FREESCALE
Quantity:
5 000
Part Number:
MC908QC16CDZE
Manufacturer:
FREESCALE
Quantity:
20 000
Enhanced Serial Communications Interface (ESCI) Module
OR — Receiver Overrun Bit
142
a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the
IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can
set the IDLE bit.
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift
register receives the next character. The OR bit generates an ESCI error interrupt request if the ORIE
bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not
affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR.
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing
sequence.
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.
In applications that are subject to software latency or in which it is important to know which byte is lost
due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after
reading the data register.
1 = Receiver input idle
0 = Receiver input active (or idle since the IDLE bit was cleared)
1 = Receive shift register full and SCRF = 1
0 = No receiver overrun
Figure 13-13
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5
BYTE 1
BYTE 1
READ SCDR
shows the normal flag-clearing sequence and an example of an overrun
READ SCS1
SCRF = 1
BYTE 1
Figure 13-13. Flag Clearing Sequence
OR = 0
READ SCDR
DELAYED FLAG CLEARING SEQUENCE
READ SCS1
NORMAL FLAG CLEARING SEQUENCE
SCRF = 1
BYTE 2
BYTE 2
BYTE 1
OR = 0
READ SCDR
READ SCS1
SCRF = 1
BYTE 2
OR = 0
BYTE 3
BYTE 3
READ SCDR
READ SCDR
READ SCS1
READ SCS1
SCRF = 1
SCRF = 1
BYTE 3
BYTE 3
OR = 1
OR = 0
BYTE 4
BYTE 4
Freescale Semiconductor

Related parts for MC908QC16CDZE