ATMEGA16HVA-4CKU Atmel, ATMEGA16HVA-4CKU Datasheet - Page 12

MCU AVR 16K FLASH 4MHZ 36-LGA

ATMEGA16HVA-4CKU

Manufacturer Part Number
ATMEGA16HVA-4CKU
Description
MCU AVR 16K FLASH 4MHZ 36-LGA
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA16HVA-4CKU

Core Processor
AVR
Core Size
8-Bit
Speed
4MHz
Connectivity
SPI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
7
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 9 V
Data Converters
A/D 5x12b
Oscillator Type
External
Operating Temperature
-20°C ~ 85°C
Package / Case
36-LGA
Processor Series
ATMEGA16x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SPI
Maximum Clock Frequency
4 MHz
Number Of Programmable I/os
6
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATAVRSB200, ATAVRSB201
Minimum Operating Temperature
- 20 C
On-chip Adc
12 bit, 5 Channel
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
7.5
7.5.1
12
Stack Pointer
ATmega8HVA/16HVA
SPH and SPL – Stack Pointer High and Stack Pointer Low
Figure 7-3.
In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x100. The Stack Pointer is decremented by one when data is pushed onto the
Stack with the PUSH instruction, and it is decremented by two when the return address is
pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one
when data is popped from the Stack with the POP instruction, and it is incremented by two when
data is popped from the Stack with return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.
X-register
Y-register
Z-register
Bit
0x3E (0x5E)
0x3D (0x5D)
Read/Write
Initial Value
The X-, Y-, and Z-registers
SP15
R/W
SP7
R/W
15
7
0
0
15
7
R27 (0x1B)
15
7
R29 (0x1D)
15
7
R31 (0x1F)
SP14
SP6
R/W
R/W
14
6
0
0
SP13
SP5
R/W
R/W
13
5
0
0
XH
ZH
0
YH
SP12
R/W
R/W
SP4
12
4
0
0
SP11
SP3
R/W
R/W
11
3
0
0
0
0
7
R26 (0x1A)
7
R30 (0x1E)
7
R28 (0x1C)
SP10
SP2
R/W
R/W
10
2
0
0
SP9
SP1
R/W
R/W
9
1
0
0
XL
YL
ZL
0
R/W
R/W
SP8
SP0
8
0
0
0
8024A–AVR–04/08
SPH
SPL
0
0
0
0
0

Related parts for ATMEGA16HVA-4CKU