DSPIC33FJ16MC101T-I/SS Microchip Technology, DSPIC33FJ16MC101T-I/SS Datasheet - Page 31

no-image

DSPIC33FJ16MC101T-I/SS

Manufacturer Part Number
DSPIC33FJ16MC101T-I/SS
Description
16-bit Motor Control DSC Family, 16 MIPS, 16KB Flash, 1KB RAM 20 SSOP .209in T/R
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr
Datasheet

Specifications of DSPIC33FJ16MC101T-I/SS

Core Processor
dsPIC
Core Size
16-Bit
Speed
16 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number Of I /o
15
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Eeprom Size
-
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 4x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
20-SSOP (0.209", 5.30mm Width)
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
3.5
The
dsPIC33FJ16MC101/102 ALU is 16 bits wide and is
capable of addition, subtraction, bit shifts, and logic
operations. Unless otherwise mentioned, arithmetic
operations are 2’s complement in nature. Depending
on the operation, the ALU can affect the values of the
Carry (C), Zero (Z), Negative (N), Overflow (OV), and
Digit Carry (DC) Status bits in the SR register. The C
and DC Status bits operate as Borrow and Digit Borrow
bits, respectively, for subtraction operations.
The ALU can perform 8-bit or 16-bit operations,
depending on the mode of the instruction that is used.
Data for the ALU operation can come from the W
register array or data memory, depending on the
addressing mode of the instruction. Likewise, output
data from the ALU can be written to the W register array
or a data memory location.
Refer to the “16-bit MCU and DSC Programmer’s Ref-
erence Manual” (DS70157) for information on the SR
bits affected by each instruction.
The
dsPIC33FJ16MC101/102 CPU incorporates hardware
support for both multiplication and division. This
includes a dedicated hardware multiplier and support
hardware for 16-bit-divisor division.
3.5.1
Using the high-speed 17-bit x 17-bit multiplier of the
DSP engine, the ALU supports unsigned, signed or
mixed-sign operation in several MCU multiplication
modes:
• 16-bit x 16-bit signed
• 16-bit x 16-bit unsigned
• 16-bit signed x 5-bit (literal) unsigned
• 16-bit unsigned x 16-bit unsigned
• 16-bit unsigned x 5-bit (literal) unsigned
• 16-bit unsigned x 16-bit signed
• 8-bit unsigned x 8-bit unsigned
3.5.2
The divide block supports 32-bit/16-bit and 16-bit/16-bit
signed and unsigned integer divide operations with the
following data sizes:
• 32-bit signed/16-bit signed divide
• 32-bit unsigned/16-bit unsigned divide
• 16-bit signed/16-bit signed divide
• 16-bit unsigned/16-bit unsigned divide
The quotient for all divide instructions ends up in W0
and the remainder in W1. The 16-bit signed and
unsigned DIV instructions can specify any W register
for both the 16-bit divisor (Wn) and any W register
(aligned) pair (W(m + 1):Wm) for the 32-bit dividend.
The divide algorithm takes one cycle per bit of divisor,
so both 32-bit/16-bit and 16-bit/16-bit instructions take
the same number of cycles to execute.
© 2011 Microchip Technology Inc.
dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102
Arithmetic Logic Unit (ALU)
MULTIPLIER
DIVIDER
dsPIC33FJ16GP101/102
dsPIC33FJ16GP101/102
and
and
Preliminary
3.6
The DSP engine consists of a high-speed 17-bit x
17-bit multiplier, a barrel shifter and a 40-bit adder/
subtracter (with two target accumulators, round and
saturation logic).
The
dsPIC33FJ16MC101/102 is a single-cycle instruction
flow architecture; therefore, concurrent operation of the
DSP engine with MCU instruction flow is not possible.
However, some MCU ALU and DSP engine resources
can be used concurrently by the same instruction (e.g.,
ED, EDAC).
The DSP engine can also perform inherent accumula-
tor-to-accumulator operations that require no additional
data. These instructions are ADD, SUB, and NEG.
The DSP engine has options selected through bits in
the CPU Core Control register (CORCON), as listed
below:
• Fractional or integer DSP multiply (IF)
• Signed or unsigned DSP multiply (US)
• Conventional or convergent rounding (RND)
• Automatic saturation on/off for ACCA (SATA)
• Automatic saturation on/off for ACCB (SATB)
• Automatic saturation on/off for writes to data
• Accumulator Saturation mode selection (ACCSAT)
A block diagram of the DSP engine is shown in
Figure
TABLE 3-1:
CLR
ED
EDAC
MAC
MAC
MOVSAC
MPY
MPY
MPY.N
MSC
memory (SATDW)
Instruction
3-3.
DSP Engine
dsPIC33FJ16GP101/102
DSP INSTRUCTIONS
SUMMARY
No change in A
A = A + (x – y)
A = A + (x * y)
A = A – x * y
Operation
A = (x – y)
Algebraic
A = A + x
A = – x * y
A = x * y
A = x
A = 0
2
2
2
2
DS70652C-page 31
ACC Write
Back
Yes
Yes
Yes
Yes
No
No
No
No
No
No
and

Related parts for DSPIC33FJ16MC101T-I/SS