STM32W108CBU6 STMICROELECTRONICS [STMicroelectronics], STM32W108CBU6 Datasheet - Page 30

no-image

STM32W108CBU6

Manufacturer Part Number
STM32W108CBU6
Description
High-performance, IEEE 802.15.4 wireless system-on-chip
Manufacturer
STMICROELECTRONICS [STMicroelectronics]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
STM32W108CBU6
Manufacturer:
ST
Quantity:
20 000
Part Number:
STM32W108CBU61
Manufacturer:
ST
0
Part Number:
STM32W108CBU61TR
Manufacturer:
ST
0
Part Number:
STM32W108CBU63
Manufacturer:
ST
0
Part Number:
STM32W108CBU63TR
Manufacturer:
ST
0
Part Number:
STM32W108CBU63TR
Manufacturer:
ST
Quantity:
20 000
Part Number:
STM32W108CBU64
Manufacturer:
ST
Quantity:
2 330
Part Number:
STM32W108CBU64
Manufacturer:
ST
0
Part Number:
STM32W108CBU64TR
Manufacturer:
IDT
Quantity:
5 803
Part Number:
STM32W108CBU64TR
Manufacturer:
ST
Quantity:
20 000
Radio frequency module
4
4.1
4.1.1
4.1.2
4.2
30/179
Radio frequency module
The radio module consists of an analog front end and digital baseband as shown in
Figure 1: STM32W108 block
Receive (Rx) path
The Rx path uses a low-IF, super-heterodyne receiver that rejects the image frequency
using complex mixing and polyphase filtering. In the analog domain, the input RF signal
from the antenna is first amplified and mixed down to a 4 MHz IF frequency. The mixers'
output is filtered, combined, and amplified before being sampled by a 12 Msps ADC. The
digitized signal is then demodulated in the digital baseband. The filtering within the Rx path
improves the STM32W108's co-existence with other 2.4 GHz transceivers such as IEEE
802.15.4, IEEE 802.11g, and Bluetooth radios. The digital baseband also provides gain
control of the Rx path, both to enable the reception of small and large wanted signals and to
tolerate large interferers.
Rx baseband
The STM32W108 Rx digital baseband implements a coherent demodulator for optimal
performance. The baseband demodulates the O-QPSK signal at the chip level and
synchronizes with the IEEE 802.15.4-defined preamble. An automatic gain control (AGC)
module adjusts the analog gain continuously every ¼ symbol until the preamble is detected.
Once detected, the gain is fixed for the remainder of the packet. The baseband despreads
the demodulated data into 4-bit symbols. These symbols are buffered and passed to the
hardware-based MAC module for packet assembly and filtering.
In addition, the Rx baseband provides the calibration and control interface to the analog Rx
modules, including the LNA, Rx baseband filter, and modulation modules. The ST RF
software driver includes calibration algorithms that use this interface to reduce the effects of
silicon process and temperature variation.
RSSI and CCA
The STM32W108 calculates the RSSI over every 8-symbol period as well as at the end of a
received packet. The linear range of RSSI is specified to be at least 40 dB over temperature.
At room temperature, the linear range is approximately 60 dB (-90 dBm to -30 dBm input
signal).
The STM32W108 Rx baseband provides support for the IEEE 802.15.4-2003 RSSI CCA
method, Clear channel reports busy medium if RSSI exceeds its threshold.
Transmit (Tx) path
The STM32W108 Tx path produces an O-QPSK-modulated signal using the analog front
end and digital baseband. The area- and power-efficient Tx architecture uses a two-point
modulation scheme to modulate the RF signal generated by the synthesizer. The modulated
RF signal is fed to the integrated PA and then out of the STM32W108.
diagram.
Doc ID 16252 Rev 2
STM32W108CB, STM32W108HB

Related parts for STM32W108CBU6