ATMEGA16A-PU Atmel, ATMEGA16A-PU Datasheet - Page 219

MCU AVR 16K FLASH 16MHZ 40-PDIP

ATMEGA16A-PU

Manufacturer Part Number
ATMEGA16A-PU
Description
MCU AVR 16K FLASH 16MHZ 40-PDIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16A-PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA16x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
ATMEGA16A-PU
Manufacturer:
ATMEL
Quantity:
10 000
Company:
Part Number:
ATMEGA16A-PU
Manufacturer:
ATMEL
Quantity:
9 800
22.8
8154B–AVR–07/09
ADC Conversion Result
Figure 22-12. Integral Non-linearity (INL)
Figure 22-13. Differential Non-linearity (DNL)
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).
For single ended conversion, the result is
where V
Table 22-3 on page 221
represents the selected reference voltage minus one LSB.
• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
• Quantization Error: Due to the quantization of the input voltage into a finite number of codes,
• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.
a range of input voltages (1 LSB wide) will code to the same value. Always ±0.5 LSB.
an ideal transition for any code. This is the compound effect of Offset, Gain Error, Differential
Error, Non-linearity, and Quantization Error. Ideal value: ±0.5 LSB.
IN
is the voltage on the selected input pin and V
Output Code
Output Code
0x000
0x3FF
and
0
Table 22-4 on page
1 LSB
222). 0x000 represents ground, and 0x3FF
REF
V
the selected voltage reference (see
REF
V
REF
Input Voltage
Input Voltage
Ideal ADC
Actual ADC
ATmega16A
219

Related parts for ATMEGA16A-PU