ATMEGA16A-PU Atmel, ATMEGA16A-PU Datasheet - Page 24

MCU AVR 16K FLASH 16MHZ 40-PDIP

ATMEGA16A-PU

Manufacturer Part Number
ATMEGA16A-PU
Description
MCU AVR 16K FLASH 16MHZ 40-PDIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA16A-PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA16x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
ATMEGA16A-PU
Manufacturer:
ATMEL
Quantity:
10 000
Company:
Part Number:
ATMEGA16A-PU
Manufacturer:
ATMEL
Quantity:
9 800
Part Number:
ATMEGA16A-PU
Manufacturer:
ATMEL
Quantity:
500
8. System Clock and Clock Options
8.1
8.1.1
8.1.2
24
Clock Systems and their Distribution
ATmega16A
CPU Clock – clk
I/O Clock – clk
I/O
Figure 8-1
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in
ment and Sleep Modes” on page
Figure 8-1.
The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.
The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that address recognition in the TWI module is carried out asynchro-
nously when clk
CPU
Asynchronous
Timer/Counter
Timer/Counter
Oscillator
presents the principal clock systems in the AVR and their distribution. All of the clocks
Clock Distribution
I/O
is halted, enabling TWI address reception in all sleep modes.
General I/O
Modules
External RC
Oscillator
clk
clk
ASY
I/O
32. The clock systems are detailed
External Clock
ADC
Control Unit
AVR Clock
Multiplexer
clk
Clock
ADC
Source Clock
CPU Core
clk
Oscillator
clk
Crystal
CPU
Reset Logic
FLASH
Watchdog Clock
Crystal Oscillator
RAM
Low-frequency
Watchdog Timer
Figure
Watchdog
Oscillator
8-1.
Flash and
EEPROM
“Power Manage-
Calibrated RC
Oscillator
8154B–AVR–07/09

Related parts for ATMEGA16A-PU