MC68HC908MR16CFU Freescale Semiconductor, MC68HC908MR16CFU Datasheet - Page 175

no-image

MC68HC908MR16CFU

Manufacturer Part Number
MC68HC908MR16CFU
Description
IC MCU 8MHZ 16K FLASH 64-QFP
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheet

Specifications of MC68HC908MR16CFU

Core Processor
HC08
Core Size
8-Bit
Speed
8MHz
Connectivity
SCI, SPI
Peripherals
LVD, POR, PWM
Number Of I /o
44
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
768 x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-QFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68HC908MR16CFU
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68HC908MR16CFUE
Manufacturer:
ALTERA
Quantity:
101
IDLE — Receiver Idle Bit
OR — Receiver Overrun Bit
Freescale Semiconductor
This clearable, read-only bit is set when 10 or 11 consecutive 1s appear on the receiver input. IDLE
generates an SCI error CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by
reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive
a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the
IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can
set the IDLE bit. Reset clears the
IDLE bit.
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift
register receives the next character. The OR bit generates an SCI error CPU interrupt request if the
ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is
not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears
the OR bit.
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing
sequence.
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.
1 = Receiver input idle
0 = Receiver input active or idle since the IDLE bit was cleared
1 = Receive shift register full and SCRF = 1
0 = No receiver overrun
Figure 13-12
BYTE 1
BYTE 1
MC68HC908MR32 • MC68HC908MR16 Data Sheet, Rev. 6.1
shows the normal flag-clearing sequence and an example of an overrun
READ SCS1
READ SCDR
SCRF = 1
Figure 13-12. Flag Clearing Sequence
OR = 0
BYTE 1
READ SCDR
READ SCS1
DELAYED FLAG CLEARING SEQUENCE
BYTE 2
BYTE 2
NORMAL FLAG CLEARING SEQUENCE
SCRF = 1
BYTE 1
OR = 0
READ SCDR
READ SCS1
SCRF = 1
BYTE 2
OR = 0
BYTE 3
BYTE 3
READ SCDR
READ SCDR
READ SCS1
READ SCS1
SCRF = 1
SCRF = 1
BYTE 3
BYTE 3
OR = 1
OR = 0
BYTE 4
BYTE 4
I/O Registers
175

Related parts for MC68HC908MR16CFU