AT91SAM7X128 Atmel, AT91SAM7X128 Datasheet - Page 353

no-image

AT91SAM7X128

Manufacturer Part Number
AT91SAM7X128
Description
MCU 32-Bit 91S ARM7TDMI RISC 128KB Flash 1.8V/3.3V 100-Pin LQFP
Manufacturer
Atmel
Datasheet

Specifications of AT91SAM7X128

Package
100LQFP
Device Core
ARM7TDMI
Family Name
91S
Maximum Speed
55 MHz
Ram Size
32 KB
Program Memory Size
128 KB
Operating Supply Voltage
1.8|3.3 V
Data Bus Width
32 Bit
Program Memory Type
Flash
Number Of Programmable I/os
62
Interface Type
CAN/Ethernet/SPI/I2S/TWI/USART/USB
On-chip Adc
8-chx10-bit
Operating Temperature
-40 to 85 °C
Number Of Timers
3

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7X128-AU
Manufacturer:
ATMEL
Quantity:
1 045
Part Number:
AT91SAM7X128-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT91SAM7X128-AU-999
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128-CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128-CU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT91SAM7X128-CU-999
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128B-AU
Manufacturer:
Atmel
Quantity:
1 929
Part Number:
AT91SAM7X128B-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128B-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
31.4
Table 31-1.
31.5
31.5.1
31.5.2
31.5.3
31.6
6120H–ATARM–17-Feb-09
Pin Name
RF
RK
RD
TF
TK
TD
Pin Name List
Product Dependencies
Functional Description
I/O Lines
Power Management
Interrupt
I/O Lines Description
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.
Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.
The SSC is not continuously clocked. The SSC interface may be clocked through the Power
Management Controller (PMC), therefore the programmer must first configure the PMC to
enable the SSC clock.
The SSC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling interrupts requires programming the AIC before configuring the SSC.
All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.
This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.
The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TK or RK pins. This allows the
SSC to support many slave-mode data transfers. The maximum clock speed allowed on the TK
and RK pins is the master clock divided by 2.
Pin Description
Receiver Frame Synchro
Receiver Clock
Receiver Data
Transmitter Frame Synchro
Transmitter Clock
Transmitter Data
AT91SAM7X512/256/128 Preliminary
Input/Output
Input/Output
Input/Output
Input/Output
Output
Type
Input
353

Related parts for AT91SAM7X128