AT91SAM7X128 Atmel, AT91SAM7X128 Datasheet - Page 80

no-image

AT91SAM7X128

Manufacturer Part Number
AT91SAM7X128
Description
MCU 32-Bit 91S ARM7TDMI RISC 128KB Flash 1.8V/3.3V 100-Pin LQFP
Manufacturer
Atmel
Datasheet

Specifications of AT91SAM7X128

Package
100LQFP
Device Core
ARM7TDMI
Family Name
91S
Maximum Speed
55 MHz
Ram Size
32 KB
Program Memory Size
128 KB
Operating Supply Voltage
1.8|3.3 V
Data Bus Width
32 Bit
Program Memory Type
Flash
Number Of Programmable I/os
62
Interface Type
CAN/Ethernet/SPI/I2S/TWI/USART/USB
On-chip Adc
8-chx10-bit
Operating Temperature
-40 to 85 °C
Number Of Timers
3

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7X128-AU
Manufacturer:
ATMEL
Quantity:
1 045
Part Number:
AT91SAM7X128-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT91SAM7X128-AU-999
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128-CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128-CU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT91SAM7X128-CU-999
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128B-AU
Manufacturer:
Atmel
Quantity:
1 929
Part Number:
AT91SAM7X128B-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X128B-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
15.3
Functional Description
The Periodic Interval Timer aims at providing periodic interrupts for use by operating systems.
The PIT provides a programmable overflow counter and a reset-on-read feature. It is built
around two counters: a 20-bit CPIV counter and a 12-bit PICNT counter. Both counters work at
Master Clock /16.
The first 20-bit CPIV counter increments from 0 up to a programmable overflow value set in the
field PIV of the Mode Register (PIT_MR). When the counter CPIV reaches this value, it resets to
0 and increments the Periodic Interval Counter, PICNT. The status bit PITS in the Status Regis-
ter (PIT_SR) rises and triggers an interrupt, provided the interrupt is enabled (PITIEN in
PIT_MR).
Writing a new PIV value in PIT_MR does not reset/restart the counters.
When CPIV and PICNT values are obtained by reading the Periodic Interval Value Register
(PIT_PIVR), the overflow counter (PICNT) is reset and the PITS is cleared, thus acknowledging
the interrupt. The value of PICNT gives the number of periodic intervals elapsed since the last
read of PIT_PIVR.
When CPIV and PICNT values are obtained by reading the Periodic Interval Image Register
(PIT_PIIR), there is no effect on the counters CPIV and PICNT, nor on the bit PITS. For exam-
ple, a profiler can read PIT_PIIR without clearing any pending interrupt, whereas a timer
interrupt clears the interrupt by reading PIT_PIVR.
The PIT may be enabled/disabled using the PITEN bit in the PIT_MR register (disabled on
reset). The PITEN bit only becomes effective when the CPIV value is 0.
Figure 15-2
illustrates
the PIT counting. After the PIT Enable bit is reset (PITEN= 0), the CPIV goes on counting until
the PIV value is reached, and is then reset. PIT restarts counting, only if the PITEN is set again.
The PIT is stopped when the core enters debug state.
AT91SAM7X512/256/128 Preliminary
80
6120H–ATARM–17-Feb-09

Related parts for AT91SAM7X128