C8051F226DK Silicon Laboratories Inc, C8051F226DK Datasheet - Page 65

DEV KIT F220/221/226/230/231/236

C8051F226DK

Manufacturer Part Number
C8051F226DK
Description
DEV KIT F220/221/226/230/231/236
Manufacturer
Silicon Laboratories Inc
Type
MCUr
Datasheet

Specifications of C8051F226DK

Contents
Evaluation Board, Power Supply, USB Cables, Adapter and Documentation
Processor To Be Evaluated
C8051F22x and C8051F23x
Interface Type
USB
Silicon Manufacturer
Silicon Labs
Core Architecture
8051
Silicon Core Number
C8051F226
Silicon Family Name
C8051F2xx
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
For Use With/related Products
C8051F220, 221, 226, 230, 231, 236
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1241
C8051F2xx
9.2.
Memory Organization
The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are
two separate memory spaces: program memory and data memory. Program and data memory share the
same address space but are accessed via different instruction types. There are 256 bytes of internal data
memory and 8 kB of internal program memory address space implemented within the CIP-51. The CIP-51
memory organization is shown in Figure 9.2.
9.2.1. Program Memory
The CIP-51 has a 8 kB program memory space. The MCU implements 8320 bytes of this program mem-
ory space as in-system, reprogrammable Flash memory, organized in a contiguous block from addresses
0x0000 to 0x207F. Note: 512 bytes (0x1E00 – 0x1FFF) of this memory are reserved for factory use and
are not available for user program storage.
Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory
by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature pro-
vides a mechanism for the CIP-51 to update program code and use the program memory space for non-
volatile data storage. Refer to Section 10 Flash Memory for further details.
9.2.2. Data Memory
The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through
0xFF. The lower 128 bytes of data memory are used for general purpose registers and memory. Either
direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00
through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight
byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or
as 128 bit locations accessible with the direct bit addressing mode.
The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the
same address space as the Special Function Registers (SFR) but is physically separate from the SFR
space. The addressing mode used by an instruction when accessing locations above 0x7F determines
whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use
direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F will
access the upper 128 bytes of data memory. Figure 9.2 illustrates the data memory organization of the
CIP-51.
Additionally, the C8051F206/226/236 feature 1024 Bytes of RAM mapped in the external data memory
space. All address locations may be accessed using the MOVX instruction. (Please see Section 11).
Rev. 1.6
65

Related parts for C8051F226DK