IC ACEX 1K FPGA 10K 100-TQFP

EP1K10TC100-3

Manufacturer Part NumberEP1K10TC100-3
DescriptionIC ACEX 1K FPGA 10K 100-TQFP
ManufacturerAltera
SeriesACEX-1K®
EP1K10TC100-3 datasheet
 

Specifications of EP1K10TC100-3

Number Of Logic Elements/cells576Number Of Labs/clbs72
Total Ram Bits12288Number Of I /o66
Number Of Gates56000Voltage - Supply2.375 V ~ 2.625 V
Mounting TypeSurface MountOperating Temperature0°C ~ 70°C
Package / Case100-TQFP, 100-VQFPLead Free Status / RoHS StatusContains lead / RoHS non-compliant
Other names544-1027  
1
2
3
4
5
6
7
8
9
10
11
Page 11
12
Page 12
13
Page 13
14
Page 14
15
Page 15
16
Page 16
17
Page 17
18
Page 18
19
Page 19
20
Page 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
Page 17/86

Download datasheet (2Mb)Embed
PrevNext
ACEX 1K Programmable Logic Device Family Data Sheet
Carry Chain
The carry chain provides a very fast (as low as 0.2 ns) carry-forward
function between LEs. The carry-in signal from a lower-order bit drives
forward into the higher-order bit via the carry chain, and feeds into both
the LUT and the next portion of the carry chain. This feature allows the
ACEX 1K architecture to efficiently implement high-speed counters,
adders, and comparators of arbitrary width. Carry chain logic can be
created automatically by the compiler during design processing, or
manually by the designer during design entry. Parameterized functions,
such as LPM and DesignWare functions, automatically take advantage of
carry chains.
Carry chains longer than eight LEs are automatically implemented by
linking LABs together. For enhanced fitting, a long carry chain skips
alternate LABs in a row. A carry chain longer than one LAB skips either
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the
first LAB in a row carries to the first LE of the third LAB in the row. The
carry chain does not cross the EAB at the middle of the row. For instance,
13
in the EP1K50 device, the carry chain stops at the eighteenth LAB, and a
new carry chain begins at the nineteenth LAB.
Figure 9
shows how an n-bit full adder can be implemented in n + 1 LEs
with the carry chain. One portion of the LUT generates the sum of two bits
using the input signals and the carry-in signal; the sum is routed to the
output of the LE. The register can be bypassed for simple adders or used
for an accumulator function. Another portion of the LUT and the carry
chain logic generates the carry-out signal, which is routed directly to the
carry-in signal of the next-higher-order bit. The final carry-out signal is
routed to an LE, where it can be used as a general-purpose signal.
Altera Corporation
17