MC9S08QG4MPAE Freescale Semiconductor, MC9S08QG4MPAE Datasheet - Page 64

IC MCU 4K FLASH 8-PDIP

MC9S08QG4MPAE

Manufacturer Part Number
MC9S08QG4MPAE
Description
IC MCU 4K FLASH 8-PDIP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheet

Specifications of MC9S08QG4MPAE

Core Processor
HCS08
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
4
Program Memory Size
4KB (4K x 8)
Program Memory Type
FLASH
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 4x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
8-DIP (0.300", 7.62mm)
Controller Family/series
HCS08
No. Of I/o's
6
Ram Memory Size
256Byte
Cpu Speed
20MHz
No. Of Timers
2
Embedded Interface Type
I2C, SCI, SPI
Rohs Compliant
Yes
Processor Series
S08QG
Core
HCS08
Data Bus Width
8 bit
Data Ram Size
256 B
Interface Type
I2C, SCI, SPI
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
12
Number Of Timers
1
Maximum Operating Temperature
+ 125 C
Mounting Style
Through Hole
3rd Party Development Tools
EWS08
Development Tools By Supplier
DEMO9S08QG8E
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Chapter 5 Resets, Interrupts, and General System Control
5.5.1
Figure 5-1
points at the next available byte location on the stack. The current values of CPU registers are stored on
the stack starting with the low-order byte of the program counter (PCL) and ending with the CCR. After
stacking, the SP points at the next available location on the stack, which is the address that is one less than
the address where the CCR was saved. The PC value that is stacked is the address of the instruction in the
main program that would have executed next if the interrupt had not occurred.
When an RTI instruction is executed, these values are recovered from the stack in reverse order. As part
of the RTI sequence, the CPU fills the instruction pipeline by reading three bytes of program information,
starting from the PC address recovered from the stack.
The status flag causing the interrupt must be acknowledged (cleared) before returning from the ISR.
Typically, the flag is cleared at the beginning of the ISR so that if another interrupt is generated by this
same source, it will be registered so it can be serviced after completion of the current ISR.
5.5.2
External interrupts are managed by the IRQ status and control register, IRQSC. When the IRQ function is
enabled, synchronous logic monitors the pin for edge-only or edge-and-level events. When the MCU is in
stop mode and system clocks are shut down, a separate asynchronous path is used so the IRQ (if enabled)
can wake the MCU.
5.5.2.1
The IRQ pin enable (IRQPE) control bit in IRQSC must be 1 for the IRQ pin to act as the interrupt request
(IRQ) input. As an IRQ input, the user can choose whether the pin detects edges-only or edges and levels
(IRQMOD), and whether an event causes an interrupt or only sets the IRQF flag, which can be polled by
software.
62
shows the content and organization of a stack frame. Before the interrupt, the stack pointer (SP)
Interrupt Stack Frame
External Interrupt Request Pin (IRQ)
Pin Configuration Options
STACKING
ORDER
MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5
UNSTACKING
5
4
3
2
1
ORDER
1
2
3
4
5
Figure 5-1. Interrupt Stack Frame
* High byte (H) of index register is not automatically stacked.
7
INDEX REGISTER (LOW BYTE X)
CONDITION CODE REGISTER
PROGRAM COUNTER HIGH
PROGRAM COUNTER LOW
ACCUMULATOR
²
²
²
TOWARD HIGHER ADDRESSES
TOWARD LOWER ADDRESSES
*
0
SP AFTER
INTERRUPT STACKING
SP BEFORE
THE INTERRUPT
Freescale Semiconductor

Related parts for MC9S08QG4MPAE