PIC18F86K22-I/PTRSL Microchip Technology, PIC18F86K22-I/PTRSL Datasheet - Page 161

no-image

PIC18F86K22-I/PTRSL

Manufacturer Part Number
PIC18F86K22-I/PTRSL
Description
MCU PIC 64K FLASH XLP 80TQFP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F86K22-I/PTRSL

Core Size
8-Bit
Program Memory Size
64KB (32K x 16)
Core Processor
PIC
Speed
64MHz
Connectivity
EBI/EMI, I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
69
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TFQFP
Controller Family/series
PIC18
Eeprom Memory Size
1024Byte
Ram Memory Size
3862Byte
Cpu Speed
16MIPS
No. Of Timers
11
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F86K22-I/PTRSL
Manufacturer:
Microchip Technology
Quantity:
10 000
11.6
External interrupts on the RB0/INT0, RB1/INT1,
RB2/INT2 and RB3/INT3 pins are edge-triggered. If the
corresponding INTEDGx bit in the INTCON2 register is
set (= 1), the interrupt is triggered by a rising edge. If
that bit is clear, the trigger is on the falling edge.
When a valid edge appears on the RBx/INTx pin, the
corresponding flag bit, INTxIF, is set. This interrupt can
be disabled by clearing the corresponding enable bit,
INTxIE. Before re-enabling the interrupt, the flag bit
(INTxIF) must be cleared in software in the Interrupt
Service Routine.
All external interrupts (INT0, INT1, INT2 and INT3) can
wake up the processor from the power-managed
modes, if bit, INTxIE, was set prior to going into the
power-managed modes. If the Global Interrupt Enable
bit (GIE) is set, the processor will branch to the interrupt
vector following wake-up.
The interrupt priority for INT1, INT2 and INT3 is
determined by the value contained in the Interrupt
Priority
(INTCON3<7>) and INT3IP (INTCON2<1>).
There is no priority bit associated with INT0. It is always
a high-priority interrupt source.
EXAMPLE 11-1:
 2010 Microchip Technology Inc.
MOVWF
MOVFF
MOVFF
;
; USER ISR CODE
;
MOVFF
MOVF
MOVFF
INTx Pin Interrupts
bits,
W_TEMP
STATUS, STATUS_TEMP
BSR, BSR_TEMP
BSR_TEMP, BSR
W_TEMP, W
STATUS_TEMP, STATUS
INT1IP
SAVING STATUS, WREG AND BSR REGISTERS IN RAM
(INTCON3<6>),
; W_TEMP is in virtual bank
; STATUS_TEMP located anywhere
; BSR_TMEP located anywhere
; Restore BSR
; Restore WREG
; Restore STATUS
INT2IP
Preliminary
PIC18F87K22 FAMILY
11.7
In 8-bit mode (the default), an overflow in the TMR0
register (FFh  00h) will set flag bit, TMR0IF. In 16-bit
mode, an overflow in the TMR0H:TMR0L register pair
(FFFFh  0000h) will set TMR0IF.
The interrupt can be enabled/disabled by setting/clearing
enable bit, TMR0IE (INTCON<5>). Interrupt priority for
Timer0 is determined by the value contained in the inter-
rupt priority bit, TMR0IP (INTCON2<2>). For further
details on the Timer0 module, see Section 13.0 “Timer0
Module”.
11.8
An input change on PORTB<7:4> sets flag bit, RBIF
(INTCON<0>). The interrupt can be enabled/disabled
by setting/clearing enable bit, RBIE (INTCON<3>).
Interrupt priority for PORTB interrupt-on-change is
determined by the value contained in the interrupt
priority bit, RBIP (INTCON2<0>).
11.9
During interrupts, the return PC address is saved on
the stack. Additionally, the WREG, STATUS and BSR
registers are saved on the Fast Return Stack.
If a fast return from interrupt is not used (see
Section 6.3 “Data Memory Organization”), the user
may need to save the WREG, STATUS and BSR regis-
ters on entry to the Interrupt Service Routine (ISR).
Depending on the user’s application, other registers
also may need to be saved.
Example 11-1 saves and restores the WREG, STATUS
and BSR registers during an Interrupt Service Routine.
TMR0 Interrupt
PORTB Interrupt-on-Change
Context Saving During Interrupts
DS39960B-page 161

Related parts for PIC18F86K22-I/PTRSL