ATmega168P Atmel Corporation, ATmega168P Datasheet - Page 148

no-image

ATmega168P

Manufacturer Part Number
ATmega168P
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega168P

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega168P-20AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168P-20AN
Manufacturer:
Microchip Technology
Quantity:
488
Part Number:
ATmega168P-20ANR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168P-20ANR
Manufacturer:
Microchip Technology
Quantity:
317
Part Number:
ATmega168P-20AU
Manufacturer:
ATMEL
Quantity:
1 250
Part Number:
ATmega168P-20AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168P-20AU
Manufacturer:
Microchip Technology
Quantity:
7 422
Part Number:
ATmega168P-20AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168P-20AUR
Manufacturer:
Microchip Technology
Quantity:
24 000
Part Number:
ATmega168P-20MQ
Manufacturer:
Microchip Technology
Quantity:
349
Part Number:
ATmega168P-20MU
Manufacturer:
ATMEL
Quantity:
12 000
Part Number:
ATmega168PA-15AZ
Manufacturer:
VAC
Quantity:
120
Part Number:
ATmega168PA-15AZ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168PA-15MZ
Manufacturer:
TOSHIBA
Quantity:
1 000
18.7.3
148
ATmega48P/88P/168P
Fast PWM Mode
Figure 18-5. CTC Mode, Timing Diagram
An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR2A is lower than the current
value of TCNT2, the counter will miss the compare match. The counter will then have to count to
its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can
occur.
For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of f
f
equation:
The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).
As for the Normal mode of operation, the
counter counts from MAX to 0x00.
The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option by
its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-
TOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match
between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output mode, the out-
put is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.
clk_I/O
/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following
TCNTn
OCnx
(Toggle)
Period
1
f
OCnx
2
=
TOV2
------------------------------------------------- -
2 N
3
Flag is set in the same timer clock cycle that the
(
f
clk_I/O
1
+
4
OCRnx
)
OCnx Interrupt Flag Set
(COMnx1:0 = 1)
8025M–AVR–6/11
OC2A
=

Related parts for ATmega168P