ATmega168P Atmel Corporation, ATmega168P Datasheet - Page 171

no-image

ATmega168P

Manufacturer Part Number
ATmega168P
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega168P

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
23
Ext Interrupts
24
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
6
Input Capture Channels
1
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega168P-20AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168P-20AN
Manufacturer:
Microchip Technology
Quantity:
488
Part Number:
ATmega168P-20ANR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168P-20ANR
Manufacturer:
Microchip Technology
Quantity:
317
Part Number:
ATmega168P-20AU
Manufacturer:
ATMEL
Quantity:
1 250
Part Number:
ATmega168P-20AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168P-20AU
Manufacturer:
Microchip Technology
Quantity:
7 422
Part Number:
ATmega168P-20AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168P-20AUR
Manufacturer:
Microchip Technology
Quantity:
24 000
Part Number:
ATmega168P-20MQ
Manufacturer:
Microchip Technology
Quantity:
349
Part Number:
ATmega168P-20MU
Manufacturer:
ATMEL
Quantity:
12 000
Part Number:
ATmega168PA-15AZ
Manufacturer:
VAC
Quantity:
120
Part Number:
ATmega168PA-15AZ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega168PA-15MZ
Manufacturer:
TOSHIBA
Quantity:
1 000
19.5
19.5.1
8025M–AVR–6/11
Register Description
SPCR – SPI Control Register
• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.
• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.
• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.
• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to
marized below:
Table 19-3.
• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to
functionality is summarized below:
Table 19-4.
Bit
0x2C (0x4C)
Read/Write
Initial Value
CPOL
CPHA
CPOL Functionality
CPHA Functionality
0
1
0
1
SPIE
R/W
7
0
Figure 19-3
SPE
R/W
6
0
and
DORD
R/W
5
0
Figure 19-4
Figure 19-3
Leading Edge
Leading Edge
MSTR
Sample
Falling
Rising
R/W
Setup
4
0
for an example. The CPOL functionality is sum-
and
CPOL
R/W
3
0
ATmega48P/88P/168P
Figure 19-4
CPHA
R/W
2
0
for an example. The CPOL
SPR1
R/W
1
0
Trailing Edge
Trailing Edge
Sample
Falling
Rising
Setup
SPR0
R/W
0
0
SPCR
171

Related parts for ATmega168P