ATtiny167 Atmel Corporation, ATtiny167 Datasheet - Page 12

no-image

ATtiny167

Manufacturer Part Number
ATtiny167
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny167

Flash (kbytes)
16 Kbytes
Pin Count
20
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
16
Ext Interrupts
16
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Lin
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
3
Input Capture Channels
1
Pwm Channels
9
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny167-15MZ
Manufacturer:
ATMEL
Quantity:
670
Part Number:
ATtiny167-A15MZ
Manufacturer:
ATMEL
Quantity:
480
Part Number:
ATtiny167-A15MZ
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny167-A15XD
Manufacturer:
BOSCH
Quantity:
40 000
Part Number:
ATtiny167-A15XZ
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny167-AXZ
Quantity:
17
2.6
2.7
12
Instruction Execution Timing
Reset and Interrupt Handling
ATtiny87/ATtiny167
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clk
the chip. No internal clock division is used.
Figure 2-4
Harvard architecture and the fast access Register File concept. This is the basic pipelining
concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions
per cost, functions per clocks, and functions per power-unit.
Figure 2-4.
Figure 2-5
ALU operation using two register operands is executed, and the result is stored back to the
destination register.
Figure 2-5.
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate Program Vector in the Program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Inter-
rupt Enable bit in the Status Register in order to enable the interrupt.
The lowest addresses in the Program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in
The list also determines the priority levels of the different interrupts. The lower the address the
higher is the priority level. RESET has the highest priority, and next is INT0 – the External
Interrupt Request 0.
Register Operands Fetch
2nd Instruction Execute
3rd Instruction Execute
ALU Operation Execute
1st Instruction Execute
2nd Instruction Fetch
3rd Instruction Fetch
4th Instruction Fetch
1st Instruction Fetch
Total Execution Time
Result Write Back
shows the internal timing concept for the Register File. In a single clock cycle an
shows the parallel instruction fetches and instruction executions enabled by the
The Parallel Instruction Fetches and Instruction Executions
Single Cycle ALU Operation
clk
clk
CPU
CPU
T1
T1
CPU
, directly generated from the selected clock source for
T2
T2
Section 7. “Interrupts” on page
T3
T3
8265B–AVR–09/10
T4
T4
59.

Related parts for ATtiny167