MC9S08JM32CLD Freescale Semiconductor, MC9S08JM32CLD Datasheet - Page 151

IC MCU 8BIT 32K FLASH 44-LQFP

MC9S08JM32CLD

Manufacturer Part Number
MC9S08JM32CLD
Description
IC MCU 8BIT 32K FLASH 44-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheet

Specifications of MC9S08JM32CLD

Core Processor
HCS08
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, LIN, SCI, SPI, USB
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
33
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
44-LQFP
Processor Series
S08JM
Core
HCS08
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SCI/SPI
Maximum Clock Frequency
24 MHz
Number Of Programmable I/os
33
Number Of Timers
8
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWS08
Development Tools By Supplier
DEMOJM, DEMOJMSKT, DEMOFLEXISJMSD, DEMO9S08JM16
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 12-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08JM32CLD
Manufacturer:
Freescale Semiconductor
Quantity:
1 948
Part Number:
MC9S08JM32CLD
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08JM32CLD
0
configured for low power operation, long sample time, continuous conversion, and automatic compare of
the conversion result to a software determined compare value.
10.4.4.1
A conversion is initiated:
If continuous conversions are enabled, a new conversion is automatically initiated after the completion of
the current conversion. In software triggered operation, continuous conversions begin after ADCSC1 is
written and continue until aborted. In hardware triggered operation, continuous conversions begin after a
hardware trigger event and continue until aborted.
10.4.4.2
A conversion is completed when the result of the conversion is transferred into the data result registers,
ADCRH and ADCRL. This is indicated by the setting of COCO. An interrupt is generated if AIEN is high
at the time that COCO is set.
A blocking mechanism prevents a new result from overwriting previous data in ADCRH and ADCRL if
the previous data is in the process of being read while in 12-bit or 10-bit MODE (the ADCRH register has
been read but the ADCRL register has not). When blocking is active, the data transfer is blocked, COCO
is not set, and the new result is lost. In the case of single conversions with the compare function enabled
and the compare condition false, blocking has no effect and ADC operation is terminated. In all other cases
of operation, when a data transfer is blocked, another conversion is initiated regardless of the state of
ADCO (single or continuous conversions enabled).
If single conversions are enabled, the blocking mechanism could result in several discarded conversions
and excess power consumption. To avoid this issue, the data registers must not be read after initiating a
single conversion until the conversion completes.
10.4.4.3
Any conversion in progress is aborted when:
Freescale Semiconductor
A write to ADCSC1 occurs (the current conversion will be aborted and a new conversion will be
initiated, if ADCH are not all 1s).
A write to ADCSC2, ADCCFG, ADCCVH, or ADCCVL occurs. This indicates a mode of
operation change has occurred and the current conversion is therefore invalid.
The MCU is reset.
The MCU enters stop mode with ADACK not enabled.
Following a write to ADCSC1 (with ADCH bits not all 1s) if software triggered operation is
selected.
Following a hardware trigger (ADHWT) event if hardware triggered operation is selected.
Following the transfer of the result to the data registers when continuous conversion is enabled.
Initiating Conversions
Completing Conversions
Aborting Conversions
MC9S08JM60 Series Data Sheet, Rev. 3
Analog-to-Digital Converter (S08ADC12V1)
151

Related parts for MC9S08JM32CLD