IC 8051 MCU 64K FLASH 64TQFP

C8051F021-GQ

Manufacturer Part NumberC8051F021-GQ
DescriptionIC 8051 MCU 64K FLASH 64TQFP
ManufacturerSilicon Laboratories Inc
SeriesC8051F02x
C8051F021-GQ datasheets
 


Specifications of C8051F021-GQ

Program Memory TypeFLASHProgram Memory Size64KB (64K x 8)
Package / Case64-TQFP, 64-VQFPCore Processor8051
Core Size8-BitSpeed25MHz
ConnectivityEBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o32Ram Size4.25K x 8
Voltage - Supply (vcc/vdd)2.7 V ~ 3.6 VData ConvertersA/D 8x8b, 8x12b; D/A 2x12b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Processor SeriesC8051F0xCore8051
Data Bus Width8 bitData Ram Size4.25 KB
Interface TypeI2C/SMBus/SPI/UARTMaximum Clock Frequency25 MHz
Number Of Programmable I/os32Number Of Timers4
Operating Supply Voltage2.7 V to 3.6 VMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development ToolsPK51, CA51, A51, ULINK2
Development Tools By SupplierC8051F020DKMinimum Operating Temperature- 40 C
On-chip Adc8-ch x 8-bit or 8-ch x 12-bitOn-chip Dac2-ch x 12-bit
No. Of I/o's32Ram Memory Size4352Byte
Cpu Speed25MHzNo. Of Timers5
No. Of Pwm Channels5Rohs CompliantYes
Data Rom Size64 KBA/d Bit Size12 bit
A/d Channels Available8Height1.05 mm
Length10 mmSupply Voltage (max)3.6 V
Supply Voltage (min)2.7 VWidth10 mm
Lead Free Status / RoHS StatusLead free / RoHS CompliantFor Use With336-1200 - DEV KIT FOR F020/F021/F022/F023
Eeprom Size-Other names336-1201
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
Page 131
132
Page 132
133
Page 133
134
Page 134
135
Page 135
136
Page 136
137
Page 137
138
Page 138
139
Page 139
140
Page 140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
Page 138/272

Download datasheet (2Mb)Embed
PrevNext
C8051F020/1/2/3
14.1. External Crystal Example
If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be as shown
in Figure 14.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crys-
tal column of the table in Figure 14.3 (OSCXCN register). For example, an 11.0592 MHz crystal requires an XFCN
setting of 111b.
The Crystal Oscillator Valid Flag (XTLVLD in register OSCXCN) is set to logic 1 by hardware when the external
crystal oscillator is running and stable. The XTLVLD detection circuit requires a startup time of at least 1 ms between
enabling the oscillator and checking the XTLVLD bit. Switching to the external oscillator before the crystal oscillator
has stabilized can result in unpredictable behavior. The recommended procedure is:
Step 1. Enable the external oscillator.
Step 2. Wait at least 1 ms.
Step 3. Poll for XTLVLD => ‘1’.
Step 4. Switch the system clock to the external oscillator.
Important Note: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as
possible to the XTAL pins on the device, as should the loading capacitors on the crystal pins. The traces should be as
short as possible and shielded with ground plane from any other traces which could introduce noise or interference.
14.2. External RC Example
If an RC network is used as an external oscillator source for the MCU, the circuit should be as shown in Figure 14.1,
Option 2. The capacitor must be no greater than 100 pF; however for small capacitors (less than ~20 pF), the total
capacitance may be dominated by PWB parasitic capacitance. To determine the required External Oscillator Fre-
quency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired fre-
quency of oscillation. If the frequency desired is 100 kHz, let R = 246 k and C = 50 pF:
3
3
f = 1.23( 10
) / RC = 1.23 ( 10
) / [ 246 * 50 ] = 0.1 MHz = 100 kHz
XFCN  log
( f / 25 kHz )
2
XFCN  log
( 100 kHz / 25 kHz ) = log
2
XFCN  2, or code 010b
14.3. External Capacitor Example
If a capacitor is used as an external oscillator for the MCU, the circuit should be as shown in Figure 14.1, Option 3.
The capacitor must be no greater than 100 pF; however for small capacitors (less than ~20 pF), the total capacitance
may be dominated by PWB parasitic capacitance. To determine the required External Oscillator Frequency Control
value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the
equations below. Assume VDD = 3.0 V and C = 50 pF:
f = KF / ( C * VDD ) = KF / ( 50 * 3 )
f = KF / 150
If a frequency of roughly 90 kHz is desired, select the K Factor from the table in Figure 14.3 as KF = 13:
f = 13 / 150 = 0.087 MHz, or 87 kHz
Therefore, the XFCN value to use in this example is 011b.
138
( 4 )
2
Rev. 1.4