IC 8051 MCU 64K FLASH 64TQFP

C8051F021-GQ

Manufacturer Part NumberC8051F021-GQ
DescriptionIC 8051 MCU 64K FLASH 64TQFP
ManufacturerSilicon Laboratories Inc
SeriesC8051F02x
C8051F021-GQ datasheets
 


Specifications of C8051F021-GQ

Program Memory TypeFLASHProgram Memory Size64KB (64K x 8)
Package / Case64-TQFP, 64-VQFPCore Processor8051
Core Size8-BitSpeed25MHz
ConnectivityEBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o32Ram Size4.25K x 8
Voltage - Supply (vcc/vdd)2.7 V ~ 3.6 VData ConvertersA/D 8x8b, 8x12b; D/A 2x12b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Processor SeriesC8051F0xCore8051
Data Bus Width8 bitData Ram Size4.25 KB
Interface TypeI2C/SMBus/SPI/UARTMaximum Clock Frequency25 MHz
Number Of Programmable I/os32Number Of Timers4
Operating Supply Voltage2.7 V to 3.6 VMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development ToolsPK51, CA51, A51, ULINK2
Development Tools By SupplierC8051F020DKMinimum Operating Temperature- 40 C
On-chip Adc8-ch x 8-bit or 8-ch x 12-bitOn-chip Dac2-ch x 12-bit
No. Of I/o's32Ram Memory Size4352Byte
Cpu Speed25MHzNo. Of Timers5
No. Of Pwm Channels5Rohs CompliantYes
Data Rom Size64 KBA/d Bit Size12 bit
A/d Channels Available8Height1.05 mm
Length10 mmSupply Voltage (max)3.6 V
Supply Voltage (min)2.7 VWidth10 mm
Lead Free Status / RoHS StatusLead free / RoHS CompliantFor Use With336-1200 - DEV KIT FOR F020/F021/F022/F023
Eeprom Size-Other names336-1201
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Page 21
22
Page 22
23
Page 23
24
Page 24
25
Page 25
26
Page 26
27
Page 27
28
Page 28
29
Page 29
30
Page 30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
Page 25/272

Download datasheet (2Mb)Embed
PrevNext
C8051F020/1/2/3
1.3.
JTAG Debug and Boundary Scan
The C8051F020 family has on-chip JTAG boundary scan and debug circuitry that provides non-intrusive, full speed,
in-circuit debugging using the production part installed in the end application, via the four-pin JTAG interface. The
JTAG port is fully compliant to IEEE 1149.1, providing full boundary scan for test and manufacturing purposes.
Silicon Labs' debugging system supports inspection and modification of memory and registers, breakpoints, watch-
points, a stack monitor, and single stepping. No additional target RAM, program memory, timers, or communications
channels are required. All the digital and analog peripherals are functional and work correctly while debugging. All
the peripherals (except for the ADC and SMBus) are stalled when the MCU is halted, during single stepping, or at a
breakpoint in order to keep them synchronized.
The C8051F020DK development kit provides all the hardware and software necessary to develop application code
and perform in-circuit debugging with the C8051F020/1/2/3 MCUs. The kit includes software with a developer's stu-
dio and debugger, an integrated 8051 assembler, and an RS-232 to JTAG serial adapter. It also has a target application
board with the associated MCU installed, plus the RS-232 and JTAG cables, and wall-mount power supply. The
Development Kit requires a Windows 95/98/NT/ME/2000 computer with one available RS-232 serial port. As shown
in Figure 1.8, the PC is connected via RS-232 to the Serial Adapter. A six-inch ribbon cable connects the Serial
Adapter to the user's application board, picking up the four JTAG pins and VDD and GND. The Serial Adapter takes
its power from the application board; it requires roughly 20 mA at 2.7-3.6 V. For applications where there is not suf-
ficient power available from the target system, the provided power supply can be connected directly to the Serial
Adapter.
Silicon Labs’ debug environment is a vastly superior configuration for developing and debugging embedded applica-
tions compared to standard MCU emulators, which use on-board "ICE Chips" and target cables and require the MCU
in the application board to be socketed. Silicon Labs' debug environment both increases ease of use and preserves the
performance of the precision analog peripherals.
Figure 1.8. Development/In-System Debug Diagram
Silicon Labs Integrated
Development Environment
WINDOWS 95/98/NT/ME/2000
RS-232
Serial
Adapter
JTAG (x4), VDD, GND
TARGET PCB
VDD
GND
C8051
F020
Rev. 1.4
25