AT86RF212 Atmel Corporation, AT86RF212 Datasheet - Page 96

no-image

AT86RF212

Manufacturer Part Number
AT86RF212
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT86RF212

Max. Operating Frequency
0 MHz
Crypto Engine
AES
Operating Voltage (vcc)
1.8 to 3.6
Frequency Band
700/800/900MHz
Max Data Rate (mb/s)
1
Antenna Diversity
No
External Pa Control
Yes
Power Output (dbm)
10
Receiver Sensitivity (dbm)
-110
Receive Current Consumption (ma)
9.0
Transmit Current Consumption (ma)
18 at 5dBm
Link Budget (dbm)
120

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT86RF212-ZU
Manufacturer:
HITTITE
Quantity:
5 000
Part Number:
AT86RF212-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT86RF212-ZUR
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
AT86RF212B-ZU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
AT86RF212B-ZUR
Quantity:
3 320
• Bit 5 – OQPSK_SCRAM_EN
If set to 1 (reset value), the scrambler is enabled for OQPSK_DATA_RATE = 2 and
BPSK_OQPSK = 1 (O-QPSK is active). Otherwise, the scrambler is disabled.
Note that during reception, this bit is evaluated within the AT86RF212, so it is explicitly
required to align different transceivers with OQPSK_SCRAM_EN in order to assure
interoperability.
• Bit 4 – OQPSK_SUB1_RC_EN
The bit is relevant for SUB_MODE = 1 and BPSK_OQPSK = 1.
If set to 0 (reset value), pulse shaping is half-sine filtering for O-QPSK transmission with
1000 kchip/s.
If set to 1, pulse shaping is RC-0.8 filtering. Compared with half-sine filtering, side-lobes
are reduced at the expense of an increased peak to average ratio (~ 1 dB). This mode
is particularly suitable for the Chinese 780 MHz band, refer to IEEE 802.15.4c-2009.
Note that during reception, this bit is not evaluated within the AT86RF212, so it is not
explicitly required to align different transceivers with OQPSK_SUB1_RC_EN in order to
assure interoperability. It is very likely that this also holds for any IEEE 802.15.4-2006
compliant O-QPSK transceiver in the 915 MHz band, since the IEEE 802.15.4-2006
requirements are fulfilled for both types of shaping.
• Bit 3 – BPSK_OQPSK
If set to 0 (reset value), BPSK transmission and reception is applied.
If set to 1, O-QPSK transmission and reception is applied.
Note that during reception, this bit is evaluated within the AT86RF212, so it is explicitly
required to align different transceivers with BPSK_OQPSK in order to assure
interoperability.
• Bit 2 – SUB_MODE
If set to 1 (reset value), the chip rate is 1000 kchip/s for BPSK_OQPSK = 1 and 600
kchip/s for BPSK_OQPSK = 0. It permits data rates out of {250, 500, 1000} kbit/s or 40
kbit/s, respectively. This mode is particularly suitable for the 915 MHz band. For O-
QPSK transmission, pulse shaping is either half-sine shaping or RC-0.8 shaping,
depending on OQPSK_SUB1_RC_EN.
If set to 0, the chip rate is 400 kchip/s for BPSK_OQPSK = 1 and 300 kchip/s for
BPSK_OQPSK = 0. It permits data rates out of {100, 200, 400} kbit/s or 20 kbit/s,
respectively. This mode is particularly suitable for the 868.3 MHz band. For O-QPSK
transmission, pulse shaping is always the combination of half-sine shaping and RC-0.2
shaping.
Note that during reception, this bit is evaluated within the AT86RF212, so it is explicitly
required to align different transceivers with SUB_MODE in order to assure
interoperability.
• Bit 1:0 – OQPSK_DATA_RATE
These register bits control the O-QPSK data rate during the PSDU part of the frame, as
depicted by Table 7-4. The reset value is OQPSK_DATA_RATE = 0.
Note that during reception, these bits are evaluated within the AT86RF212, so it is
explicitly required to align different transceivers with OQPSK_DATA_RATE in order to
assure interoperability.
AT86RF212
96
8168C-MCU Wireless-02/10

Related parts for AT86RF212