MC68HC11E1CFN3 Freescale Semiconductor, MC68HC11E1CFN3 Datasheet - Page 224

IC MCU 3MHZ 512 EEPROM 52-PLCC

MC68HC11E1CFN3

Manufacturer Part Number
MC68HC11E1CFN3
Description
IC MCU 3MHZ 512 EEPROM 52-PLCC
Manufacturer
Freescale Semiconductor
Series
HC11r
Datasheet

Specifications of MC68HC11E1CFN3

Core Processor
HC11
Core Size
8-Bit
Speed
3MHz
Connectivity
SCI, SPI
Peripherals
POR, WDT
Number Of I /o
38
Program Memory Type
ROMless
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
52-PLCC
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SCI, SPI
Maximum Clock Frequency
3 MHz
Number Of Programmable I/os
22
Number Of Timers
16 bit
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
8 bit
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Program Memory Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68HC11E1CFN3
Manufacturer:
MOT
Quantity:
2 600
Part Number:
MC68HC11E1CFN3
Manufacturer:
MOTOROLA
Quantity:
2 337
Part Number:
MC68HC11E1CFN3
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68HC11E1CFN3
Manufacturer:
ST
0
Part Number:
MC68HC11E1CFN3
Manufacturer:
MOTOROLA/摩托罗拉
Quantity:
20 000
Application Note
Allowing for Bootstrap Mode
Mode Select Pins
RESET
RxD Pin
224
Since bootstrap mode requires few connections to the MCU, it is easy to
design systems that accommodate bootstrap mode.
Bootstrap mode is useful for diagnosing or repairing systems that have
failed due to changes in the CONFIG register or failures of the expansion
address/data buses, (rendering programs in external memory useless).
Bootstrap mode can also be used to load information into the EPROM or
EEPROM of an M68HC11 after final assembly of a module. Bootstrap
mode is also useful for performing system checks and calibration
routines. The following paragraphs explain system requirements for use
of bootstrap mode in a product.
It must be possible to force the MODA and MODB pins to logic 0, which
implies that these two pins should be pulled up to V
rather than being tied directly to V
to V
hard wired for. It is also good practice to use pulldown resistors to V
rather than connecting mode pins directly to V
sometimes a useful debug aid to attempt reset in modes other than the
one the system was primarily designed for. Physically, this requirement
sometimes calls for the addition of a test point or a wire connected to one
or both mode pins. Mode selection only uses the mode pins while
RESET is active.
It must be possible to initiate a reset while the mode select pins are held
low. In systems where there is no provision for manual reset, it is usually
possible to generate a reset by turning power off and back on.
It must be possible to drive the PD0/RxD pin with serial data from a host
computer (or another MCU). In many systems, this pin is already used
for SCI communications; thus no changes are required.
In systems where the PD0/RxD pin is normally used as a general-
purpose output, a serial signal from the host can be connected to the pin
Freescale Semiconductor, Inc.
DD
For More Information On This Product,
, it is not possible to force a mode other than the one the MCU is
Go to: www.freescale.com
DD
. If mode pins are connected directly
SS
because it is
DD
through resistors
AN1060 — Rev. 1.0
MOTOROLA
SS

Related parts for MC68HC11E1CFN3