PIC18F46K22-I/MV Microchip Technology, PIC18F46K22-I/MV Datasheet - Page 323

64KB, Flash, 3968bytes-RAM,8-bit Family,nanoWatt XLP 40 UQFN 5x5x0.5mm TUBE

PIC18F46K22-I/MV

Manufacturer Part Number
PIC18F46K22-I/MV
Description
64KB, Flash, 3968bytes-RAM,8-bit Family,nanoWatt XLP 40 UQFN 5x5x0.5mm TUBE
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr
Datasheet

Specifications of PIC18F46K22-I/MV

Core Processor
PIC
Core Size
8-Bit
Speed
64MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
35
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 30x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-UFQFN Exposed Pad
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
4 KB
Number Of Programmable I/os
36
Number Of Timers
3 x 8-bit. 4 x 16-bit
Operating Supply Voltage
1.8 V to 5.5 V
Mounting Style
SMD/SMT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
19.3.2
There is a small amount of capacitance from the
internal A/D Converter sample capacitor as well as
stray capacitance from the circuit board traces and
pads that affect the precision of capacitance
measurements.
capacitance can be taken by making sure the desired
capacitance to be measured has been removed. The
measurement is then performed using the following
steps:
1.
2.
3.
4.
5.
6.
where I is known from the current source measurement
step, t is a fixed delay and V is measured by performing
an A/D conversion.
This measured value is then stored and used for
calculations of time measurement or subtracted for
capacitance measurement. For calibration, it is
expected that the capacitance of C
approximately known. C
An iterative process may need to be used to adjust the
time, t, that the circuit is charged to obtain a reasonable
voltage reading from the A/D Converter. The value of t
may be determined by setting C
value, then solving for t. For example, if C
theoretically calculated to be 11 pF, and V is expected
to be 70% of V
or 63 s.
See
capacitance calibration.
 2010 Microchip Technology Inc.
Initialize the A/D Converter and the CTMU.
Set EDG1STAT (= 1).
Wait for a fixed delay of time t.
Clear EDG1STAT.
Perform an A/D conversion.
Calculate the stray and A/D sample capacitances:
Example 19-3
C
OFFSET
CAPACITANCE CALIBRATION
(4 pF + 11 pF) • 2.31V/0.55 A
DD
, or 2.31V, then t would be:
A
=
for a typical routine for CTMU
C
measurement
STRAY
AD
is approximately 4 pF.
+
C
OFFSET
AD
=
STRAY
of
to a theoretical
I t 
 V 
the
+ C
STRAY
AD
stray
Preliminary
is
is
PIC18(L)F2X/4XK22
DS41412D-page 323

Related parts for PIC18F46K22-I/MV