SAM3S1B Atmel Corporation, SAM3S1B Datasheet - Page 804

no-image

SAM3S1B

Manufacturer Part Number
SAM3S1B
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM3S1B

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
64 MHz
Cpu
Cortex-M3
# Of Touch Channels
23
Hardware Qtouch Acquisition
No
Max I/o Pins
34
Ext Interrupts
34
Usb Transceiver
1
Quadrature Decoder Channels
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
3
Twi (i2c)
2
Uart
4
Ssc
1
Sd / Emmc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
10
Adc Resolution (bits)
12
Adc Speed (ksps)
1000
Analog Comparators
1
Resistive Touch Screen
No
Dac Channels
2
Dac Resolution (bits)
12
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
YES
Dram Memory
No
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.62 to 3.6
Fpu
No
Mpu / Mmu
Yes / No
Timers
3
Output Compare Channels
3
Input Capture Channels
3
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes
35.8.2
35.8.3
804
SAM3S
Data Transfer Operation
Read Operation
The High Speed MultiMedia Card allows several read/write operations (single block, multiple
blocks, stream, etc.). These kinds of transfer can be selected setting the Transfer Type (TRTYP)
field in the HSMCI Command Register (HSMCI_CMDR).
These operations can be done using the features of the Peripheral DMA Controller (PDC). If the
PDCMODE bit is set in HSMCI_MR, then all reads and writes use the PDC facilities.
In all cases, the block length (BLKLEN field) must be defined either in the mode register
HSMCI_MR, or in the Block Register HSMCI_BLKR. This field determines the size of the data
block.
Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions
are defined (the host can use either one at any time):
The following flowchart shows how to read a single block with or without use of PDC facilities. In
this example (see
user can configure the interrupt enable register (HSMCI_IER) to trigger an interrupt at the end of
read.
• Open-ended/Infinite Multiple block read (or write):
• Multiple block read (or write) with pre-defined block count (since version 3.1 and higher):
The number of blocks for the read (or write) multiple block operation is not defined. The card
will continuously transfer (or program) data blocks until a stop transmission command is
received.
The card will transfer (or program) the requested number of data blocks and terminate the
transaction. The stop command is not required at the end of this type of multiple block read
(or write), unless terminated with an error. In order to start a multiple block read (or write)
with pre-defined block count, the host must correctly program the HSMCI Block Register
(HSMCI_BLKR). Otherwise the card will start an open-ended multiple block read. The BCNT
field of the Block Register defines the number of blocks to transfer (from 1 to 65535 blocks).
Programming the value 0 in the BCNT field corresponds to an infinite block transfer.
Figure
35-8), a polling method is used to wait for the end of read. Similarly, the
6500C–ATARM–8-Feb-11

Related parts for SAM3S1B