MC68HC711E9CFNE2 Freescale Semiconductor, MC68HC711E9CFNE2 Datasheet - Page 297

IC MCU 8BIT 512RAM 52-PLC

MC68HC711E9CFNE2

Manufacturer Part Number
MC68HC711E9CFNE2
Description
IC MCU 8BIT 512RAM 52-PLC
Manufacturer
Freescale Semiconductor
Series
HC11r
Datasheet

Specifications of MC68HC711E9CFNE2

Core Processor
HC11
Core Size
8-Bit
Speed
2MHz
Connectivity
SCI, SPI
Peripherals
POR, WDT
Number Of I /o
38
Program Memory Size
12KB (12K x 8)
Program Memory Type
OTP
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
52-PLCC
Processor Series
HC711E
Core
HC11
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SCI, SPI
Maximum Clock Frequency
2 MHz
Number Of Programmable I/os
38
Number Of Timers
8
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
8 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68HC711E9CFNE2
Manufacturer:
TE
Quantity:
12 000
Part Number:
MC68HC711E9CFNE2
Manufacturer:
FREESCAL
Quantity:
5 530
Part Number:
MC68HC711E9CFNE2
Manufacturer:
FREESCALE
Quantity:
1 133
AN1060 — Rev. 1.0
MOTOROLA
The duplicator program in EEPROM clears the DWOM control bit to
change port D (thus, TxD) of U3 to normal driven outputs. This
configuration will prevent interference due to R9 when TxD from the
target MCU (U6) becomes active. Series resistor R9 demonstrates how
TxD of U3 can drive RxD of U3[1] and later TxD of U6 can drive RxD of
U3 without a destructive conflict between the TxD output buffers.
As the target MCU (U6) leaves reset, its mode pins select bootstrap
mode so the bootloader firmware begins executing. A break is sent out
the TxD pin of U6. At this time, the TxD pin of U3 is at a driven high so
R9 acts as a pullup resistor for TxD of the target MCU (U6). The break
character sent from U6 is received by U3 so the duplicator program that
is running in the EEPROM of the master MCU knows that the target
MCU is ready to accept a bootloaded program.
The master MCU sends a leading $FF character to set the baud rate in
the target MCU. Next, the master MCU passes a 3-instruction program
to the target MCU and pauses so the bootstrap program in the target
MCU will stop the loading process and jump to the start of the
downloaded program. This sequence demonstrates the variable-length
download feature of the MC68HC711E9 bootloader.
The short program downloaded to the target MCU clears the DWOM bit
to change its TxD pin to a normal driven CMOS output and jumps to the
EPROM programming utility in the bootstrap ROM of the target MCU.
Note that the small downloaded program did not have to set up the SCI
or initialize any parameters for the EPROM programming process. The
bootstrap software that ran prior to the loaded program left the SCI
turned on and configured in a way that was compatible with the SCI in
the master MCU (the duplicator program in the master MCU also did not
have to set up the SCI for the same reason). The programming time and
starting address for EPROM programming in the target MCU were also
set to default values by the bootloader software before jumping to the
start of the downloaded program.
Before the EPROM in the target MCU can be programmed, the V
power supply must be available at the XIRQ/V
The duplicator program running in the master MCU monitors this voltage
(for presence or absence, not level) at PE7 through resistor divider
PPE
pin of the target MCU.
Application Note
PP
297

Related parts for MC68HC711E9CFNE2