AT90CAN32 Automotive Atmel Corporation, AT90CAN32 Automotive Datasheet - Page 206

no-image

AT90CAN32 Automotive

Manufacturer Part Number
AT90CAN32 Automotive
Description
Manufacturer
Atmel Corporation

Specifications of AT90CAN32 Automotive

Flash (kbytes)
32 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
8
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
2
Can
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
1024
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 125
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
8
Input Capture Channels
2
Pwm Channels
7
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes
18.3.5
18.4
206
SDA
SCL
START
Multi-master Bus Systems, Arbitration and Synchronization
AT90CAN32/64/128
Combining Address and Data Packets Into a Transmission
Addr MSB
1
2
Acknowledge (ACK) is signalled by the receiver pulling the SDA line low during the ninth SCL
cycle. If the receiver leaves the SDA line high, a NACK is signalled. When the receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.
Figure 18-5. Data Packet Format
A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the master and the slave. The slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the master is too fast for the
slave, or the slave needs extra time for processing between the data transmissions. The slave
extending the SCL low period will not affect the SCL high period, which is determined by the
master. As a consequence, the slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.
Figure 18-6
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.
Figure 18-6. Typical Data Transmission
The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:
SLA+R/W
Addr LSB R/W
7
shows a typical data transmission. Note that several data bytes can be transmitted
8
ACK
9
Data MSB
1
2
Data Byte
7
Data LSB ACK
8
9
7682C–AUTO–04/08
STOP

Related parts for AT90CAN32 Automotive