IC MCU 8BIT 3MHZ 52-PLCC

MC68HC11E0CFNE3

Manufacturer Part NumberMC68HC11E0CFNE3
DescriptionIC MCU 8BIT 3MHZ 52-PLCC
ManufacturerFreescale Semiconductor
SeriesHC11
MC68HC11E0CFNE3 datasheets
 

Specifications of MC68HC11E0CFNE3

Core ProcessorHC11Core Size8-Bit
Speed3MHzConnectivitySCI, SPI
PeripheralsPOR, WDTNumber Of I /o38
Program Memory TypeROMlessRam Size512 x 8
Voltage - Supply (vcc/vdd)4.5 V ~ 5.5 VData ConvertersA/D 8x8b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case52-PLCCController Family/series68HC11
No. Of I/o's38Ram Memory Size512Byte
Cpu Speed3MHzNo. Of Timers1
Embedded Interface TypeSCI, SPIDigital Ic Case StyleLCC
Rohs CompliantYesProcessor SeriesHC11E
CoreHC11Data Bus Width8 bit
Data Ram Size512 BInterface TypeSCI, SPI
Maximum Clock Frequency3 MHzNumber Of Programmable I/os38
Number Of Timers8Maximum Operating Temperature+ 85 C
Mounting StyleSMD/SMTMinimum Operating Temperature- 40 C
On-chip Adc8 bit, 8 ChannelLead Free Status / RoHS StatusLead free / RoHS Compliant
Eeprom Size-Program Memory Size-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Page 41
42
Page 42
43
Page 43
44
Page 44
45
Page 45
46
Page 46
47
Page 47
48
Page 48
49
Page 49
50
Page 50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
Page 47/124

Download datasheet (7Mb)Embed
PrevNext
Freescale Semiconductor, Inc.
Semiconductor wafer processing causes variations of the RC time-out values between
individual devices. An E-clock frequency below 10 kHz is detected as a clock monitor
error. An E-clock frequency of 200 kHz or more prevents clock monitor errors. Using
the clock monitor function when the E clock is below 200 kHz is not recommended.
Special considerations are needed when a STOP instruction is executed and the clock
monitor is enabled. Because the STOP function causes the clocks to be halted, the
clock monitor function generates a reset sequence if it is enabled at the time the STOP
mode was initiated. Before executing a STOP instruction, clear the CME bit in the OP-
TION register to zero to disable the clock monitor. After recovery from STOP, set the
CME bit to logic one to enable the clock monitor.
5.1.5 Option Register
OPTION — System Configuration Options
Bit 7
6
0
0
RESET:
0
0
*Can be written only once in first 64 cycles out of reset in normal modes, or at any time in special modes.
Bits [7:6] and 2 — Not implemented
Always read zero
IRQE — Configure IRQ for Edge Sensitive Only Operation
This bit can be written only once during the first 64 E-clock cycles after reset in normal
modes.
0 = Low level recognition
1 = Falling edge recognition
DLY — Enable Oscillator Startup Delay
This bit is set during reset and can be written only once during the first 64 E-clock cy-
cles after reset in normal modes. If an external clock source rather than a crystal is
used, the stabilization delay can be inhibited because the clock source is assumed to
be stable.
0 = No stabilization delay on exit from STOP
1 = Stabilization delay enabled on exit from STOP
CME — Clock Monitor Enable
This control bit can be read or written at any time and controls whether or not the in-
ternal clock monitor circuit triggers a reset sequence when the system clock is slow or
absent. When it is clear, the clock monitor circuit is disabled. When it is set, the clock
monitor circuit is enabled. Reset clears the CME bit.
CR[1:0] — COP Timer Rate Select
These control bits determine a scaling factor for the watchdog timer.
TECHNICAL DATA
For More Information On This Product,
5
4
3
IRQE*
DLY*
CME
0
1
0
RESETS AND INTERRUPTS
Go to: www.freescale.com
$0039
2
1
Bit 0
0
CR1*
CR0*
0
0
0
5-3