IC MCU 8BIT 3MHZ 52-PLCC

MC68HC11E0CFNE3

Manufacturer Part NumberMC68HC11E0CFNE3
DescriptionIC MCU 8BIT 3MHZ 52-PLCC
ManufacturerFreescale Semiconductor
SeriesHC11
MC68HC11E0CFNE3 datasheets
 

Specifications of MC68HC11E0CFNE3

Core ProcessorHC11Core Size8-Bit
Speed3MHzConnectivitySCI, SPI
PeripheralsPOR, WDTNumber Of I /o38
Program Memory TypeROMlessRam Size512 x 8
Voltage - Supply (vcc/vdd)4.5 V ~ 5.5 VData ConvertersA/D 8x8b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case52-PLCCController Family/series68HC11
No. Of I/o's38Ram Memory Size512Byte
Cpu Speed3MHzNo. Of Timers1
Embedded Interface TypeSCI, SPIDigital Ic Case StyleLCC
Rohs CompliantYesProcessor SeriesHC11E
CoreHC11Data Bus Width8 bit
Data Ram Size512 BInterface TypeSCI, SPI
Maximum Clock Frequency3 MHzNumber Of Programmable I/os38
Number Of Timers8Maximum Operating Temperature+ 85 C
Mounting StyleSMD/SMTMinimum Operating Temperature- 40 C
On-chip Adc8 bit, 8 ChannelLead Free Status / RoHS StatusLead free / RoHS Compliant
Eeprom Size-Program Memory Size-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Page 51
52
Page 52
53
Page 53
54
Page 54
55
Page 55
56
Page 56
57
Page 57
58
Page 58
59
Page 59
60
Page 60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
Page 54/124

Download datasheet (7Mb)Embed
PrevNext
Freescale Semiconductor, Inc.
Table 5-5 Stacking Order on Entry to Interrupts
Memory Location
SP – 1
SP –2
SP – 3
SP – 4
SP – 5
SP – 6
SP – 7
SP – 8
5.4.2 Non-Maskable Interrupt Request XIRQ
Non-maskable interrupts are useful because they can always interrupt CPU opera-
tions. The most common use for such an interrupt is for serious system problems, such
as program runaway or power failure. The XIRQ input is an updated version of the
nonmaskable NMI input of earlier MCUs.
Upon reset, both the X bit and I bits of the CCR are set to inhibit all maskable interrupts
and XIRQ. After minimum system initialization, software can clear the X bit by a TAP
instruction, enabling XIRQ interrupts. Thereafter, software cannot set the X bit. Thus,
an XIRQ interrupt is a nonmaskable interrupt. Because the operation of the I-bit-relat-
ed interrupt structure has no effect on the X bit, the internal XIRQ pin remains non-
masked. In the interrupt priority logic, the XIRQ interrupt has a higher priority than any
source that is maskable by the I bit. All I-bit-related interrupts operate normally with
their own priority relationship.
When an I-bit-related interrupt occurs, the I bit is automatically set by hardware after
stacking the CCR byte. The X bit is not affected. When an X-bit-related interrupt oc-
curs, both the X and I bits are automatically set by hardware after stacking the CCR.
A return from interrupt instruction restores the X and I bits to their pre-interrupt request
state.
5.4.3 Illegal Opcode Trap
Because not all possible opcodes or opcode sequences are defined, the MCU in-
cludes an illegal opcode detection circuit, which generates an interrupt request. When
an illegal opcode is detected and the interrupt is recognized, the current value of the
program counter is stacked. After interrupt service is complete, reinitialize the stack
pointer so repeated execution of illegal opcodes does not cause stack underflow. Left
uninitialized, the illegal opcode vector can point to a memory location that contains an
illegal opcode. This condition causes an infinite loop that causes stack underflow. The
stack grows until the system crashes.
The illegal opcode trap mechanism works for all unimplemented opcodes on all four
opcode map pages. The address stacked as the return address for the illegal opcode
interrupt is the address of the first byte of the illegal opcode. Otherwise, it would be
almost impossible to determine whether the illegal opcode had been one or two bytes.
5-10
For More Information On This Product,
CPU Registers
SP
PCL
PCH
IYL
IYH
IXL
IXH
ACCA
ACCB
CCR
RESETS AND INTERRUPTS
Go to: www.freescale.com
TECHNICAL DATA