IC MCU 128K 6MHZ A/D IT 64TQFP

ATMEGA103-6AI

Manufacturer Part NumberATMEGA103-6AI
DescriptionIC MCU 128K 6MHZ A/D IT 64TQFP
ManufacturerAtmel
SeriesAVR® ATmega
ATMEGA103-6AI datasheets
 


Specifications of ATMEGA103-6AI

Core ProcessorAVRCore Size8-Bit
Speed6MHzConnectivitySPI, UART/USART
PeripheralsPOR, PWM, WDTNumber Of I /o32
Program Memory Size128KB (64K x 16)Program Memory TypeFLASH
Eeprom Size4K x 8Ram Size4K x 8
Voltage - Supply (vcc/vdd)4 V ~ 5.5 VData ConvertersA/D 8x10b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case64-TQFP, 64-VQFPFor Use WithATSTK501 - ADAPTER KIT FOR 64PIN AVR MCU
Lead Free Status / RoHS StatusContains lead / RoHS non-compliant  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Page 51
52
Page 52
53
Page 53
54
Page 54
55
Page 55
56
Page 56
57
Page 57
58
Page 58
59
Page 59
60
Page 60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
Page 59/141

Download datasheet (3Mb)Embed
PrevNext
Prevent EEPROM
Corruption
0945I–AVR–02/07
During periods of low V
, the EEPROM Data can be corrupted because the supply volt-
CC
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board-level systems using the EEPROM and the same design solutions
should be applied.
An EEPROM Data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Second, the CPU itself can execute instructions incorrectly if the sup-
ply voltage for executing instructions is too low.
EEPROM Data corruption can easily be avoided by following these design recommen-
dations (one is sufficient):
1. Keep the AVR RESET active (low) during periods of insufficient power supply
voltage. This is best done by an external low V
referred to as a Brown-out Detector (BOD). Please refer to application note “AVR
180” for design considerations regarding Power-on Reset and low-voltage
detection.
2. Keep the AVR core in Power-down sleep mode during periods of low V
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the EEPROM Registers from unintentional writes.
3. Store constants in Flash memory if the ability to change memory contents from
software is not required. Flash memory cannot be updated by the CPU and will
not be subject to corruption.
ATmega103(L)
Reset Protection circuit, often
CC
. This
CC
59