IC MCU 128K 6MHZ A/D IT 64TQFP

ATMEGA103-6AI

Manufacturer Part NumberATMEGA103-6AI
DescriptionIC MCU 128K 6MHZ A/D IT 64TQFP
ManufacturerAtmel
SeriesAVR® ATmega
ATMEGA103-6AI datasheets
 

Specifications of ATMEGA103-6AI

Core ProcessorAVRCore Size8-Bit
Speed6MHzConnectivitySPI, UART/USART
PeripheralsPOR, PWM, WDTNumber Of I /o32
Program Memory Size128KB (64K x 16)Program Memory TypeFLASH
Eeprom Size4K x 8Ram Size4K x 8
Voltage - Supply (vcc/vdd)4 V ~ 5.5 VData ConvertersA/D 8x10b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case64-TQFP, 64-VQFPFor Use WithATSTK501 - ADAPTER KIT FOR 64PIN AVR MCU
Lead Free Status / RoHS StatusContains lead / RoHS non-compliant  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Page 31
32
Page 32
33
Page 33
34
Page 34
35
Page 35
36
Page 36
37
Page 37
38
Page 38
39
Page 39
40
Page 40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
Page 37/141

Download datasheet (3Mb)Embed
PrevNext
Power-down Mode
Power-save Mode
0945I–AVR–02/07
When the SM1/SM0 bits are set to 10, the SLEEP instruction makes the MCU enter the
Power-down mode. In this mode, the external Oscillator is stopped while the external
interrupts and the Watchdog (if enabled) continue operating. Only an External Reset, a
Watchdog Reset (if enabled), or an external level interrupt can wake up the MCU.
Note that if a level-triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. This makes the MCU
less sensitive to noise. The changed level is sampled twice by the Watchdog Oscillator
clock and if the input has the required level during this time, the MCU will wake up. The
period of the Watchdog Oscillator is 1 µs (nominal) at 5.0V and 25°C. The frequency of
the Watchdog Oscillator is voltage-dependent, as shown in “Typical Characteristics” on
page 123.
When waking up from Power-down mode, a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable
after having been stopped. The wake-up period is defined by the same SUT fuses that
define the Reset Time-out period. The wake-up period is equal to the clock reset period,
as shown in Table 5 on page 27.
If the wake-up condition disappears before the MCU wakes up and starts to execute,
e.g., a low-level on is not held long enough, the interrupt causing the wake-up will not be
executed.
When the SM1/SM0 bits are 11, the SLEEP instruction makes the MCU enter the
Power-save mode. This mode is identical to Power-down, with one exception:
If Timer/Counter0 is clocked asynchronously, i.e., the AS0 bit in ASSR is set,
Timer/Counter0 will run during sleep. In addition to the Power-down wake-up sources,
the device can also wake up from either Timer Overflow or Output Compare event from
Timer/Counter0 if the corresponding Timer/Counter0 interrupt enable bits are set in
TIMSK. To ensure that the part executes the interrupt routine when waking up, also set
the Global Interrupt Enable bit i SREG.
When waking up from Power-save mode by an external interrupt, two instruction cycles
are executed before the Interrupt Flags are updated. When waking up by the asynchro-
nous timer, three instruction cycles are executed before the flags are updated. During
these cycles, the processor executes instructions, but the interrupt condition is not read-
able and the interrupt routine has not started yet. If the asynchronous timer is not
clocked asynchronously, Power-down mode is recommended instead of Power-save
mode because the contents of the registers in the asynchronous timer should be consid-
ered undefined after wake-up in Power-save mode if AS0 is 0.
ATmega103(L)
37