AT91SAM7S256D-AU Atmel, AT91SAM7S256D-AU Datasheet - Page 244

no-image

AT91SAM7S256D-AU

Manufacturer Part Number
AT91SAM7S256D-AU
Description
ARM Microcontrollers - MCU 256K Flash SRAM 64K ARM based MCU
Manufacturer
Atmel
Series
SAM7S256r
Datasheet

Specifications of AT91SAM7S256D-AU

Rohs
yes
Core
ARM
Processor Series
AT91SAM
Data Bus Width
16 bit/32 bit
Maximum Clock Frequency
55 MHz
Program Memory Size
256 KB
Data Ram Size
64 KB
On-chip Adc
Yes
Operating Supply Voltage
3 V to 3.6 V
Operating Temperature Range
- 40 C to + 85 C
Package / Case
LQFP-64
Mounting Style
SMD/SMT
Interface Type
2-Wire, I2S, SPI, USART
Length
7 mm

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7S256D-AU
Manufacturer:
ATMEL
Quantity:
101
Part Number:
AT91SAM7S256D-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7S256D-AU-999
Manufacturer:
Atmel
Quantity:
10 000
27.4.5
27.4.6
27.4.7
Synchronous Data Output
Multi Drive Control (Open Drain)
Output Line Timings
a bit in this register is at 0, the corresponding I/O line is used as an input only. When the bit is at
1, the corresponding I/O line is driven by the PIO controller.
The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data
Register) and PIO_CODR (Clear Output Data Register). These write operations respectively set
and clear PIO_ODSR (Output Data Status Register), which represents the data driven on the I/O
lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to
be controlled by the PIO controller or assigned to a peripheral function. This enables configura-
tion of the I/O line prior to setting it to be managed by the PIO Controller.
Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it
defines the first level driven on the I/O line.
Controlling all parallel busses using several PIOs requires two successive write operations in the
PIO_SODR and PIO_CODR registers. This may lead to unexpected transient values. The PIO
controller offers a direct control of PIO outputs by single write access to PIO_ODSR (Output
Data Status Register). Only bits unmasked by PIO_OWSR (Output Write Status Register) are
written. The mask bits in the PIO_OWSR are set by writing to PIO_OWER (Output Write Enable
Register) and cleared by writing to PIO_OWDR (Output Write Disable Register).
After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at
0x0.
Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This
feature permits several drivers to be connected on the I/O line which is driven low only by each
device. An external pull-up resistor (or enabling of the internal one) is generally required to guar-
antee a high level on the line.
The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and
PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O line
is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver
Status Register) indicates the pins that are configured to support external drivers.
After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.
Figure 27-4
directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is
set.
Figure 27-4
shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by
also shows when the feedback in PIO_PDSR is available.
SAM7S Series [DATASHEET]
6175M–ATARM–26-Oct-12
244

Related parts for AT91SAM7S256D-AU