MC9S12G FREESCALE [Freescale Semiconductor, Inc], MC9S12G Datasheet - Page 560

no-image

MC9S12G

Manufacturer Part Number
MC9S12G
Description
Ignores external trigger. Performs one conversion sequence and stops.
Manufacturer
FREESCALE [Freescale Semiconductor, Inc]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12G128MLH
Manufacturer:
ROHM
Quantity:
1 200
Part Number:
MC9S12G128MLH
Manufacturer:
FREESCALE
Quantity:
1 500
Part Number:
MC9S12G128MLH
Manufacturer:
FREESCALE
Quantity:
1 500
Part Number:
MC9S12G128MLL
Manufacturer:
AVAGO
Quantity:
2 300
Part Number:
MC9S12G128MLL
Manufacturer:
FREESCALE
Quantity:
3 400
Part Number:
MC9S12G128MLL
Manufacturer:
FREESCALE
Quantity:
3 400
Part Number:
MC9S12G192CLL
Manufacturer:
FREESCALE
Quantity:
3 400
Part Number:
MC9S12GC128GFU2
Quantity:
69
Part Number:
MC9S12GC128MFUE
Manufacturer:
Freescale Semiconductor
Quantity:
135
Pulse-Width Modulator (S12PWM8B8CV2)
Shown in
17.4.2.7
The scalable PWM timer also has the option of generating up to 8-channels of 8-bits or 4-channels of
16-bits for greater PWM resolution. This 16-bit channel option is achieved through the concatenation of
two 8-bit channels.
The PWMCTL register contains four control bits, each of which is used to concatenate a pair of PWM
channels into one 16-bit channel. Channels 6 and 7 are concatenated with the CON67 bit, channels 4 and
5 are concatenated with the CON45 bit, channels 2 and 3 are concatenated with the CON23 bit, and
channels 0 and 1 are concatenated with the CON01 bit.
When channels 6 and 7 are concatenated, channel 6 registers become the high order bytes of the double
byte channel, as shown in
registers become the high order bytes of the double byte channel. When channels 2 and 3 are concatenated,
channel 2 registers become the high order bytes of the double byte channel. When channels 0 and 1 are
concatenated, channel 0 registers become the high order bytes of the double byte channel.
When using the 16-bit concatenated mode, the clock source is determined by the low order 8-bit channel
clock select control bits. That is channel 7 when channels 6 and 7 are concatenated, channel 5 when
channels 4 and 5 are concatenated, channel 3 when channels 2 and 3 are concatenated, and channel 1 when
channels 0 and 1 are concatenated. The resulting PWM is output to the pins of the corresponding low order
8-bit channel as also shown in
PPOLx bit of the corresponding low order 8-bit channel as well.
560
This document is valid for the S12G96 and the S12G128 device. All information related to other devices is preliminary.
E = 100 ns
Clock Source = E, where E = 10 MHz (100 ns period)
Figure 17-20
PPOLx = 0
PWMPERx = 4
PWMDTYx = 1
PWMx Frequency = 10 MHz/8 = 1.25 MHz
PWMx Period = 800 ns
PWMx Duty Cycle = 3/4 *100% = 75%
PWM 16-Bit Functions
Change these bits only when both corresponding channels are disabled.
Figure 17-20. PWM Center Aligned Output Example Waveform
is the output waveform generated.
Figure
Figure
MC9S12G Family Reference Manual,
17-21. Similarly, when channels 4 and 5 are concatenated, channel 4
17-21. The polarity of the resulting PWM output is controlled by the
DUTY CYCLE = 75%
PERIOD = 800 ns
NOTE
Rev.1.01
Freescale Semiconductor
E = 100 ns

Related parts for MC9S12G