S9S12HY64J0MLL Freescale Semiconductor, S9S12HY64J0MLL Datasheet - Page 154

no-image

S9S12HY64J0MLL

Manufacturer Part Number
S9S12HY64J0MLL
Description
MCU 64K FLASH AUTO 100-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of S9S12HY64J0MLL

Core Processor
HCS12
Core Size
16-Bit
Speed
32MHz
Connectivity
CAN, EBI/EMI, I²C, IrDA, LIN, SCI, SPI
Peripherals
LCD, Motor control PWM, POR, PWM, WDT
Number Of I /o
80
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
100-LQFP
Controller Family/series
S12
No. Of I/o's
80
Ram Memory Size
4KB
Cpu Speed
64MHz
No. Of Timers
2
Rohs Compliant
Yes
Processor Series
S12HY
Core
HCS12
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
DEMO9S12HY64
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S12HY64J0MLL
Manufacturer:
FREESCALE
Quantity:
4 350
Part Number:
S9S12HY64J0MLL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S12HY64J0MLL
Manufacturer:
FREESCALE
Quantity:
4 350
Part Number:
S9S12HY64J0MLL
Manufacturer:
FREESCALE
Quantity:
20 000
Interrupt Module (S12SINTV1)
4.4
The INT module processes all exception requests to be serviced by the CPU module. These exceptions
include interrupt vector requests and reset vector requests. Each of these exception types and their overall
priority level is discussed in the subsections below.
4.4.1
The CPU handles both reset requests and interrupt requests. A priority decoder is used to evaluate the
priority of pending interrupt requests.
4.4.2
The INT module contains a priority decoder to determine the priority for all interrupt requests pending for
the CPU. If more than one interrupt request is pending, the interrupt request with the higher vector address
wins the prioritization.
The following conditions must be met for an I bit maskable interrupt request to be processed.
Since an interrupt vector is only supplied at the time when the CPU requests it, it is possible that a higher
priority interrupt request could override the original interrupt request that caused the CPU to request the
vector. In this case, the CPU will receive the highest priority vector and the system will process this
interrupt request first, before the original interrupt request is processed.
154
IVB_ADDR[7:0]
1. The local interrupt enabled bit in the peripheral module must be set.
2. The I bit in the condition code register (CCR) of the CPU must be cleared.
3. There is no SWI, TRAP, or X bit maskable request pending.
Field
7–0
Functional Description
S12S Exception Requests
Interrupt Prioritization
All non I bit maskable interrupt requests always have higher priority than
the I bit maskable interrupt requests. If the X bit in the CCR is cleared, it is
possible to interrupt an I bit maskable interrupt by an X bit maskable
interrupt. It is possible to nest non maskable interrupt requests, e.g., by
nesting SWI or TRAP calls.
Interrupt Vector Base Address Bits — These bits represent the upper byte of all vector addresses. Out of
reset these bits are set to 0xFF (i.e., vectors are located at 0xFF80–0xFFFE) to ensure compatibility to
HCS12.
Note: A system reset will initialize the interrupt vector base register with “0xFF” before it is used to determine
Note: If the BDM is active (i.e., the CPU is in the process of executing BDM firmware code), the contents of
the reset vector address. Therefore, changing the IVBR has no effect on the location of the three reset
vectors (0xFFFA–0xFFFE).
IVBR are ignored and the upper byte of the vector address is fixed as “0xFF”. This is done to enable
handling of all non-maskable interrupts in the BDM firmware.
MC9S12HY/HA-Family Reference Manual, Rev. 1.04
Table 4-3. IVBR Field Descriptions
NOTE
Description
Freescale Semiconductor

Related parts for S9S12HY64J0MLL