S9S12HY64J0MLL Freescale Semiconductor, S9S12HY64J0MLL Datasheet - Page 222

no-image

S9S12HY64J0MLL

Manufacturer Part Number
S9S12HY64J0MLL
Description
MCU 64K FLASH AUTO 100-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of S9S12HY64J0MLL

Core Processor
HCS12
Core Size
16-Bit
Speed
32MHz
Connectivity
CAN, EBI/EMI, I²C, IrDA, LIN, SCI, SPI
Peripherals
LCD, Motor control PWM, POR, PWM, WDT
Number Of I /o
80
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
100-LQFP
Controller Family/series
S12
No. Of I/o's
80
Ram Memory Size
4KB
Cpu Speed
64MHz
No. Of Timers
2
Rohs Compliant
Yes
Processor Series
S12HY
Core
HCS12
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
DEMO9S12HY64
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S12HY64J0MLL
Manufacturer:
FREESCALE
Quantity:
4 350
Part Number:
S9S12HY64J0MLL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S12HY64J0MLL
Manufacturer:
FREESCALE
Quantity:
4 350
Part Number:
S9S12HY64J0MLL
Manufacturer:
FREESCALE
Quantity:
20 000
S12S Debug Module (S12SDBGV2)
This however violates the S12SDBGV1 specification, which states that a match leading to final state
always has priority in case of a simultaneous match, whilst priority is also given to the lowest channel
number. For S12SDBG the corresponding CPU priority decoder is removed to support this, such that on
simultaneous taghits, taghits pointing to final state have highest priority. If no taghit points to final state
then the lowest channel number has priority. Thus with the above encoding from State3, the CPU and DBG
would break on a simultaneous M0/M2.
6.5.6
Trigger if following event A, event C precedes event B. i.e. the expected execution flow is A->B->C.
Scenario 5 is possible with the S12SDBGV1 SCR encoding
6.5.7
Trigger if event A occurs twice in succession before any of 2 other events (BC) occurs. This scenario is
not possible using the S12SDBGV1 SCR encoding. S12SDBGV2 includes additions shown in red. The
change in SCR1 encoding also has the advantage that a State1->State3 transition using M0 is now possible.
This is advantageous because range and data bus comparisons use channel0 only.
6.5.8
Trigger when a series of 3 events is executed out of order. Specifying the event order as M1,M2,M0 to run
in loops (120120120). Any deviation from that order should trigger. This scenario is not possible using the
222
Scenario 5
Scenario 6
Scenario 7
SCR1=0011
SCR1=1001
State1
State1
MC9S12HY/HA-Family Reference Manual, Rev. 1.04
M1
M0
M2
M12
SCR2=0110
SCR3=1010
Figure 6-34. Scenario 5
Figure 6-35. Scenario 6
State2
State3
M0
M0
Final State
Final State
Freescale Semiconductor

Related parts for S9S12HY64J0MLL