LPC2468FBD208,551 NXP Semiconductors, LPC2468FBD208,551 Datasheet - Page 250

IC ARM7 MCU FLASH 512K 208-LQFP

LPC2468FBD208,551

Manufacturer Part Number
LPC2468FBD208,551
Description
IC ARM7 MCU FLASH 512K 208-LQFP
Manufacturer
NXP Semiconductors
Series
LPC2400r
Datasheets

Specifications of LPC2468FBD208,551

Program Memory Type
FLASH
Program Memory Size
512KB (512K x 8)
Package / Case
208-LQFP
Core Processor
ARM7
Core Size
16/32-Bit
Speed
72MHz
Connectivity
CAN, EBI/EMI, Ethernet, I²C, Microwire, MMC, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o
160
Ram Size
98K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
LPC24
Core
ARM7TDMI-S
Data Bus Width
16 bit, 32 bit
Data Ram Size
98 KB
Interface Type
CAN/I2S/ISP/SSP/UART/USB
Maximum Clock Frequency
72 MHz
Number Of Programmable I/os
160
Number Of Timers
6
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, IRD-LPC2468-DEV, SAB-TFBGA208, KSK-LPC2468-PL
Development Tools By Supplier
OM10100
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
On-chip Dac
1-ch x 10-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
622-1025 - KIT DEV IND REF DESIGN LPC2468622-1024 - BOARD SCKT ADAPTER FOR TFBGA208568-4358 - DISPLAY QVGA TFT FOR OM10100568-4309 - BOARD EXTENSION LPCSTICK568-4308 - EVAL LPC-STICK WITH LPC2468MCB2400U - BOARD EVAL MCB2400 + ULINK2MCB2400 - BOARD EVAL FOR NXP LPC246X SER622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
568-4261
935282457551
LPC2468FBD208-S

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC2468FBD208,551
Quantity:
9 999
Part Number:
LPC2468FBD208,551
Manufacturer:
TI
Quantity:
1 908
Part Number:
LPC2468FBD208,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
UM10237_4
User manual
Ethernet block has finished reading/writing the last descriptor/status of the array (with the
highest memory address), the next descriptor/status it reads/writes is the first
descriptor/status of the array at the base address of the array.
Full and Empty state of descriptor arrays
The descriptor arrays can be empty, partially full or full. A descriptor array is empty when
all descriptors are owned by the producer. A descriptor array is partially full if both
producer and consumer own part of the descriptors and both are busy processing those
descriptors. A descriptor array is full when all descriptors (except one) are owned by the
consumer, so that the producer has no more room to process frames. Ownership of
descriptors is indicated with the use of a consume index and a produce index. The
produce index is the first element of the array owned by the producer. It is also the index
of the array element that is next going to be used by the producer of frames (it may
already be busy using it and subsequent elements). The consume index is the first
element of the array that is owned by the consumer. It is also the number of the array
element next to be consumed by the consumer of frames (it and subsequent elements
may already be in the process of being consumed). If the consume index and the produce
index are equal, the descriptor array is empty and all array elements are owned by the
producer. If the consume index equals the produce index plus one, then the array is full
and all array elements (except the one at the produce index) are owned by the consumer.
With a full descriptor array, still one array element is kept empty, to be able to easily
distinguish the full or empty state by looking at the value of the produce index and
consume index. An array must have at least 2 elements to be able to indicate a full
descriptor array with a produce index of value 0 and a consume index of value 1. The
wrap around of the arrays is taken into account when determining if a descriptor array is
full, so a produce index that indicates the last element in the array and a consume index
that indicates the first element in the array, also means the descriptor array is full. When
the produce index and the consume index are unequal and the consume index is not the
produce index plus one (with wrap around taken into account), then the descriptor array is
partially full and both the consumer and producer own enough descriptors to be able to
operate actively on the descriptor array.
Interrupt bit
The descriptors have an Interrupt bit, which is programmed by software. When the
Ethernet block is processing a descriptor and finds this bit set, it will allow triggering an
interrupt (after committing status to memory) by passing the RxDoneInt or TxDoneInt bits
in the IntStatus register to the interrupt output pin. If the Interrupt bit is not set in the
descriptor, then the RxDoneInt or TxDoneInt are not set and no interrupt is triggered (note
that the corresponding bits in IntEnable must also be set to trigger interrupts). This offers
flexible ways of managing the descriptor arrays. For instance, the device driver could add
10 frames to the Tx descriptor array, and set the Interrupt bit in descriptor number 5 in the
descriptor array. This would invoke the interrupt service routine before the transmit
descriptor array is completely exhausted. The device driver could add another batch of
frames to the descriptor array, without interrupting continuous transmission of frames.
Frame fragments
For maximum flexibility in frame storage, frames can be split up into multiple frame
fragments with fragments located in different places in memory. In this case one
descriptor is used for each frame fragment. So, a descriptor can point to a single frame or
Rev. 04 — 26 August 2009
Chapter 11: LPC24XX Ethernet
UM10237
© NXP B.V. 2009. All rights reserved.
250 of 792

Related parts for LPC2468FBD208,551