LPC2468FBD208,551 NXP Semiconductors, LPC2468FBD208,551 Datasheet - Page 379

IC ARM7 MCU FLASH 512K 208-LQFP

LPC2468FBD208,551

Manufacturer Part Number
LPC2468FBD208,551
Description
IC ARM7 MCU FLASH 512K 208-LQFP
Manufacturer
NXP Semiconductors
Series
LPC2400r
Datasheets

Specifications of LPC2468FBD208,551

Program Memory Type
FLASH
Program Memory Size
512KB (512K x 8)
Package / Case
208-LQFP
Core Processor
ARM7
Core Size
16/32-Bit
Speed
72MHz
Connectivity
CAN, EBI/EMI, Ethernet, I²C, Microwire, MMC, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o
160
Ram Size
98K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
LPC24
Core
ARM7TDMI-S
Data Bus Width
16 bit, 32 bit
Data Ram Size
98 KB
Interface Type
CAN/I2S/ISP/SSP/UART/USB
Maximum Clock Frequency
72 MHz
Number Of Programmable I/os
160
Number Of Timers
6
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, IRD-LPC2468-DEV, SAB-TFBGA208, KSK-LPC2468-PL
Development Tools By Supplier
OM10100
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
On-chip Dac
1-ch x 10-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
622-1025 - KIT DEV IND REF DESIGN LPC2468622-1024 - BOARD SCKT ADAPTER FOR TFBGA208568-4358 - DISPLAY QVGA TFT FOR OM10100568-4309 - BOARD EXTENSION LPCSTICK568-4308 - EVAL LPC-STICK WITH LPC2468MCB2400U - BOARD EVAL MCB2400 + ULINK2MCB2400 - BOARD EVAL FOR NXP LPC246X SER622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
568-4261
935282457551
LPC2468FBD208-S

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC2468FBD208,551
Quantity:
9 999
Part Number:
LPC2468FBD208,551
Manufacturer:
TI
Quantity:
1 908
Part Number:
LPC2468FBD208,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
UM10237_4
User manual
14.4.12 MS_byte_extracted
14.4.13 Present_DMA_count
14.4.14 Message_length_position
14.4.15 Isochronous_packetsize_memory_address
14.4.11 LS_byte_extracted
14.5.1 Setting up DMA transfers
14.5.2 Finding DMA Descriptor
14.5 Non-isochronous endpoint operation
Used in ATLE mode. When set, this bit indicates that the Least Significant Byte (LSB) of
the transfer length has been extracted. The extracted size is reflected in the
DMA_buffer_length field, bits 23:16.
Used in ATLE mode. When set, this bit indicates that the Most Significant Byte (MSB) of
the transfer size has been extracted. The size extracted is reflected in the
DMA_buffer_length field, bits 31:24. Extraction stops when LS_Byte_extracted and
MS_byte_extracted bits are set.
The number of bytes transferred by the DMA engine. The DMA engine updates this field
after completing each packet transfer.
For isochronous endpoints, Present_DMA_count is the number of packets transferred; for
non-isochronous endpoints, Present_DMA_count is the number of bytes.
Used in ATLE mode. This field gives the offset of the message length position embedded
in the incoming data packets. This is applicable only for OUT endpoints. Offset 0 indicates
that the message length starts from the first byte of the first packet.
The memory buffer address where the packet size information along with the frame
number has to be transferred or fetched. See
isochronous endpoints only.
Software prepares the DMA Descriptors (DDs) for those physical endpoints to be enabled
for DMA transfer. These DDs are present in the USB RAM. The start address of the first
DD is programmed into the DMA Description pointer (DDP) location for the corresponding
endpoint in the UDCA. Software then sets the EPxx_DMA_ENABLE bit for this endpoint in
the USBEpDMAEn register
is set to ‘00’ for normal mode operation. All other DD fields are initialized as specified in
Table
DMA operation is not supported for physical endpoints 0 and 1 (default control endpoints).
When there is a trigger for a DMA transfer for an endpoint, the DMA engine will first
determine whether a new descriptor has to the fetched or not. A new descriptor does not
have to be fetched if the last packet transferred was for the same endpoint and the DD is
not yet in the retired state. An internal flag called DMA_PROCEED is used to identify this
condition (see
13–357.
Section 13–14.5.4 “Optimizing descriptor fetch” on page
Rev. 04 — 26 August 2009
(Section
13–9.8.6).The DMA_mode bit field in the descriptor
Chapter 13: LPC24XX USB device controller
Figure
13–49. This is applicable to
UM10237
© NXP B.V. 2009. All rights reserved.
380).
379 of 792

Related parts for LPC2468FBD208,551