EP3C25F324I7 Altera, EP3C25F324I7 Datasheet - Page 79

IC CYCLONE III FPGA 25K 324 FBGA

EP3C25F324I7

Manufacturer Part Number
EP3C25F324I7
Description
IC CYCLONE III FPGA 25K 324 FBGA
Manufacturer
Altera
Series
Cyclone® IIIr

Specifications of EP3C25F324I7

Number Of Logic Elements/cells
24624
Number Of Labs/clbs
1539
Total Ram Bits
608256
Number Of I /o
215
Voltage - Supply
1.15 V ~ 1.25 V
Mounting Type
Surface Mount
Operating Temperature
-40°C ~ 100°C
Package / Case
324-FBGA
Family Name
Cyclone III
Number Of Logic Blocks/elements
24624
# I/os (max)
215
Frequency (max)
437.5MHz
Process Technology
65nm
Operating Supply Voltage (typ)
1.2V
Logic Cells
24624
Ram Bits
608256
Operating Supply Voltage (min)
1.15V
Operating Supply Voltage (max)
1.25V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
324
Package Type
FBGA
For Use With
544-2370 - KIT STARTER CYCLONE III EP3C25
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP3C25F324I7
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP3C25F324I7
Manufacturer:
ALTERA
0
Part Number:
EP3C25F324I7
0
Part Number:
EP3C25F324I7N
Manufacturer:
ALTERA32
Quantity:
181
Part Number:
EP3C25F324I7N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP3C25F324I7N
Manufacturer:
XILINX
0
Part Number:
EP3C25F324I7N
Manufacturer:
ALTERA
0
Part Number:
EP3C25F324I7N
0
Chapter 5: Clock Networks and PLLs in the Cyclone III Device Family
Hardware Features
Hardware Features
Clock Multiplication and Division
© December 2009
1
Altera Corporation
Cyclone III device family PLLs support several features for general-purpose clock
management. This section discusses clock multiplication and division
implementation, phase shifting implementations, and programmable duty cycles.
Each Cyclone III device family PLL provides clock synthesis for PLL output ports
using M/(N*post-scale counter) scaling factors. The input clock is divided by a
pre-scale factor, N, and is then multiplied by the M feedback factor. The control loop
drives the VCO to match f
that divides down the high-frequency VCO. For multiple PLL outputs with different
frequencies, the VCO value is the least common multiple of the output frequencies
that meets its frequency specifications. For example, if output frequencies required
from one PLL are 33 and 66 MHz, the Quartus II software sets the VCO to 660 MHz
(the least common multiple of 33 and 66 MHz in the VCO range). Then, the post-scale
counters scale down the VCO frequency for each output port.
There is one pre-scale counter, N, and one multiply counter, M, per PLL, with a range
of 1 to 512 for both M and N. The N counter does not use duty cycle control because
the purpose of this counter is only to calculate frequency division. There are five
generic post-scale counters per PLL that can feed GCLKs or external clock outputs.
These post-scale counters range from 1 to 512 with a 50% duty cycle setting. The
post-scale counters range from 1 to 256 with any non-50% duty cycle setting. The sum
of the high/low count values chosen for a design selects the divide value for a given
counter.
The Quartus II software automatically chooses the appropriate scaling factors
according to the input frequency, multiplication, and division values entered into the
ALTPLL megafunction.
Phase alignment between output counters are determined using the t
specification.
IN
(M/N). Each output port has a unique post-scale counter
Cyclone III Device Handbook, Volume 1
PLL_PSERR
5–15

Related parts for EP3C25F324I7