EP4SGX530HH35C2N Altera, EP4SGX530HH35C2N Datasheet - Page 71

IC STRATIX IV FPGA 530K 1152HBGA

EP4SGX530HH35C2N

Manufacturer Part Number
EP4SGX530HH35C2N
Description
IC STRATIX IV FPGA 530K 1152HBGA
Manufacturer
Altera
Series
Stratix® IV GXr

Specifications of EP4SGX530HH35C2N

Number Of Logic Elements/cells
531200
Number Of Labs/clbs
21248
Total Ram Bits
27376
Number Of I /o
564
Voltage - Supply
0.87 V ~ 0.93 V
Mounting Type
Surface Mount
Operating Temperature
0°C ~ 85°C
Package / Case
1152-HBGA
Family Name
Stratix® IV
Number Of Logic Blocks/elements
531200
# Registers
424960
# I/os (max)
560
Process Technology
40nm
Operating Supply Voltage (typ)
900mV
Logic Cells
531200
Ram Bits
28033024
Operating Supply Voltage (min)
0.87V
Operating Supply Voltage (max)
0.93V
Operating Temp Range
0C to 85C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
1152
Package Type
FCHBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP4SGX530HH35C2N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP4SGX530HH35C2N
Manufacturer:
ALTERA
0
Part Number:
EP4SGX530HH35C2NAD
Manufacturer:
ALTERA
0
Part Number:
EP4SGX530HH35C2NAE
Manufacturer:
ALTERA
0
Chapter 3: TriMatrix Embedded Memory Blocks in Stratix IV Devices
Memory Modes
Figure 3–14. Shift-Register Memory Configuration
February 2011 Altera Corporation
Shift-Register Mode
w x m x n Shift Register
W
W
W
W
All Stratix IV memory blocks support shift register mode. Embedded memory block
configurations can implement shift registers for digital signal processing (DSP)
applications, such as finite impulse response (FIR) filters, pseudo-random number
generators, multi-channel filtering, and auto- and cross-correlation functions. These
and other DSP applications require local data storage, traditionally implemented with
standard flipflops that quickly exhaust many logic cells for large shift registers. A
more efficient alternative is to use embedded memory as a shift-register block, which
saves logic cell and routing resources.
The size of a shift register (w × m × n) is determined by the input data width (w), the
length of the taps (m), and the number of taps (n). You can cascade memory blocks to
implement larger shift registers.
Figure 3–14
m-Bit Shift Register
m-Bit Shift Register
m-Bit Shift Register
m-Bit Shift Register
shows the TriMatrix memory block in shift-register mode.
W
W
W
W
Stratix IV Device Handbook Volume 1
n Number of Taps
3–15

Related parts for EP4SGX530HH35C2N