PIC18F27J53T-I/SO Microchip Technology, PIC18F27J53T-I/SO Datasheet - Page 428

no-image

PIC18F27J53T-I/SO

Manufacturer Part Number
PIC18F27J53T-I/SO
Description
28-pin, USB, 128KB Flash, 4KB RAM, 12 MIPS, 12-bit ADC, NanoWatt XLP 28 SOIC .30
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr
Datasheets

Specifications of PIC18F27J53T-I/SO

Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, LIN, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
2.15 V ~ 3.6 V
Data Converters
A/D 10x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3.8 KB
Interface Type
I2C, SPI, USART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
16
Number Of Timers
8
Operating Supply Voltage
2.15 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
PIC18F47J53 FAMILY
The CTMU current source may be trimmed with the
trim bits in CTMUICON using an iterative process to get
an exact desired current. Alternatively, the nominal
value without adjustment may be used; it may be
stored by the software for use in all subsequent
capacitive or time measurements.
To calculate the value for R
must be chosen and then the resistance can be
calculated. For example, if the A/D Converter reference
voltage is 3.3V, use 70% of full scale or 2.31V as the
desired approximate voltage to be read by the A/D
Converter. If the range of the CTMU current source is
selected to be 0.55 A, the resistor value needed is cal-
culated as R
Similarly, if the current source is chosen to be 5.5 A,
R
source is set to 55 A.
FIGURE 27-2:
DS39964B-page 428
CAL
would be 420,000Ω, and 42,000Ω if the current
ANx
R
CAL
CAL
= 2.31V/0.55 A, for a value of 4.2 MΩ.
CTMU CURRENT SOURCE
CALIBRATION CIRCUIT
Current Source
MUX
PIC18F47J53
CAL
A/D Converter
, the nominal current
A/D
CTMU
Preliminary
A value of 70% of full-scale voltage is chosen to make
sure that the A/D Converter was in a range that is well
above the noise floor. Keep in mind that if an exact cur-
rent is chosen that is to incorporate the trimming bits
from CTMUICON, the resistor value of R
to be adjusted accordingly. R
to allow for available resistor values. R
the highest precision available, keeping in mind the
amount of precision needed for the circuit that the
CTMU will be used to measure. A recommended
minimum would be 0.1% tolerance.
The following examples show one typical method for
performing a CTMU current calibration. Example 27-1
demonstrates how to initialize the A/D Converter and
the CTMU. This routine is typical for applications using
both modules. Example 27-2 demonstrates one
method for the actual calibration routine.
 2010 Microchip Technology Inc.
CAL
may also be adjusted
CAL
CAL
should be of
may need

Related parts for PIC18F27J53T-I/SO