PIC18F27J53T-I/SO Microchip Technology, PIC18F27J53T-I/SO Datasheet - Page 455

no-image

PIC18F27J53T-I/SO

Manufacturer Part Number
PIC18F27J53T-I/SO
Description
28-pin, USB, 128KB Flash, 4KB RAM, 12 MIPS, 12-bit ADC, NanoWatt XLP 28 SOIC .30
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr
Datasheets

Specifications of PIC18F27J53T-I/SO

Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, LIN, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
2.15 V ~ 3.6 V
Data Converters
A/D 10x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3.8 KB
Interface Type
I2C, SPI, USART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
16
Number Of Timers
8
Operating Supply Voltage
2.15 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
28.4
The Two-Speed Start-up feature helps to minimize the
latency period, from oscillator start-up to code execu-
tion, by allowing the microcontroller to use the INTRC
oscillator as a clock source until the primary clock
source is available. It is enabled by setting the IESO
Configuration bit.
Two-Speed Start-up should be enabled only if the
primary
(Crystal-Based) modes. Since the EC and ECPLL
modes do not require an Oscillator Start-up Timer
(OST) delay, Two-Speed Start-up should be disabled.
FIGURE 28-3:
28.4.1
While using the INTRC oscillator in Two-Speed
Start-up, the device still obeys the normal command
sequences for entering power-managed modes,
including
Section 4.1.4 “Multiple Sleep Commands”). In
practice, this means that user code can change the
SCS<1:0> bit settings or issue SLEEP instructions
before the OST times out. This would allow an applica-
tion to briefly wake-up, perform routine “housekeeping”
tasks and return to Sleep before the device starts to
operate from the primary oscillator.
User code can also check if the primary clock source is
currently providing the device clocking by checking the
status of the OSTS bit (OSCCON<3>). If the bit is set,
the primary oscillator is providing the clock. Otherwise,
the internal oscillator block is providing the clock during
wake-up from Reset or Sleep mode.
 2010 Microchip Technology Inc.
Two-Speed Start-up
oscillator
SPECIAL CONSIDERATIONS FOR
USING TWO-SPEED START-UP
serial
Note1: T
CPU Clock
Peripheral
PLL Clock
Program
Counter
INTRC
Output
OSC1
Clock
SLEEP
OST
mode
TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)
Wake from Interrupt Event
= 1024 T
PC
instructions
is
OSC
Q1
HS
; T
T
OST
PLL
(1)
or
= 2 ms (approx). These intervals are not shown to scale.
Q2
(refer
PC + 2
HSPLL
OSTS bit Set
T
Preliminary
Q3
PLL
to
(1)
Q4
PIC18F47J53 FAMILY
When enabled, Resets and wake-ups from Sleep mode
cause the device to configure itself to run from the inter-
nal oscillator block as the clock source, following the
time-out of the Power-up Timer after a Power-on Reset
is enabled. This allows almost immediate code
execution while the primary oscillator starts and the
OST is running. Once the OST times out, the device
automatically switches to PRI_RUN mode.
In all other power-managed modes, Two-Speed
Start-up is not used. The device will be clocked by the
currently selected clock source until the primary clock
source becomes available. The setting of the IESO bit
is ignored.
28.5
The Fail-Safe Clock Monitor (FSCM) allows the
microcontroller to continue operation in the event of an
external oscillator failure by automatically switching the
device clock to the internal oscillator block. The FSCM
function is enabled by setting the FCMEN Configuration
bit.
When FSCM is enabled, the INTRC oscillator runs at
all times to monitor clocks to peripherals and provide a
backup clock in the event of a clock failure. Clock
monitoring (shown in Figure 28-4) is accomplished by
creating a sample clock signal, which is the INTRC out-
put divided by 64. This allows ample time between
FSCM sample clocks for a peripheral clock edge to
occur. The peripheral device clock and the sample
clock are presented as inputs to the clock monitor latch.
The clock monitor is set on the falling edge of the
device clock source but cleared on the rising edge of
the sample clock.
Q1
1
Transition
2
Clock
Fail-Safe Clock Monitor
n-1 n
PC + 4
Q2
Q3 Q4
Q1
PC + 6
DS39964B-page 455
Q2
Q3

Related parts for PIC18F27J53T-I/SO