PIC18F27J53T-I/SO Microchip Technology, PIC18F27J53T-I/SO Datasheet - Page 86

no-image

PIC18F27J53T-I/SO

Manufacturer Part Number
PIC18F27J53T-I/SO
Description
28-pin, USB, 128KB Flash, 4KB RAM, 12 MIPS, 12-bit ADC, NanoWatt XLP 28 SOIC .30
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr
Datasheets

Specifications of PIC18F27J53T-I/SO

Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, LIN, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
2.15 V ~ 3.6 V
Data Converters
A/D 10x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3.8 KB
Interface Type
I2C, SPI, USART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
16
Number Of Timers
8
Operating Supply Voltage
2.15 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
PIC18F47J53 FAMILY
6.2
6.2.1
The microcontroller clock input, whether from an
internal or external source, is internally divided by ‘4’ to
generate four non-overlapping quadrature clocks (Q1,
Q2, Q3 and Q4). Internally, the PC is incremented on
every Q1; the instruction is fetched from the program
memory and latched into the Instruction Register (IR)
during Q4. The instruction is decoded and executed
during the following Q1 through Q4. Figure 6-4
illustrates the clocks and instruction execution flow.
FIGURE 6-4:
EXAMPLE 6-3:
DS39964B-page 86
1. MOVLW 55h
2. MOVWF PORTB
3. BRA SUB_1
4. BSF
5. Instruction @ address SUB_1
Note:
OSC2/CLKO
(RC mode)
PIC18 Instruction Cycle
CLOCKING SCHEME
PORTA, BIT3 (Forced NOP)
OSC1
All instructions are single-cycle, except for any program branches. These take two cycles since the
fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then
executed.
PC
Q1
Q2
Q3
Q4
Q1
CLOCK/INSTRUCTION CYCLE
INSTRUCTION PIPELINE FLOW
Execute INST (PC – 2)
Fetch INST (PC)
Q2
Fetch 1
T
PC
CY
Q3
0
Q4
Execute 1
Fetch 2
T
CY
1
Q1
Preliminary
Fetch INST (PC + 2)
Execute INST (PC)
Q2
Execute 2
Fetch 3
PC + 2
T
CY
2
6.2.2
An “Instruction Cycle” consists of four Q cycles, Q1
through Q4. The instruction fetch and execute are pipe-
lined in such a manner that a fetch takes one instruction
cycle, while the decode and execute take another
instruction cycle. However, due to the pipelining, each
instruction effectively executes in one cycle. If an
instruction causes the PC to change (e.g., GOTO), then
two cycles are required to complete the instruction
(Example 6-3).
A fetch cycle begins with the PC incrementing in Q1.
In the execution cycle, the fetched instruction is latched
into the IR in cycle, Q1. This instruction is then decoded
and executed during the Q2, Q3 and Q4 cycles. Data
memory is read during Q2 (operand read) and written
during Q4 (destination write).
Q3
Q4
Execute 3
Fetch 4
T
CY
INSTRUCTION FLOW/PIPELINING
3
Q1
Execute INST (PC + 2)
Fetch INST (PC + 4)
Fetch SUB_1 Execute SUB_1
Flush (NOP)
Q2
PC + 4
T
 2010 Microchip Technology Inc.
CY
4
Q3
Q4
T
CY
Internal
Phase
Clock
5

Related parts for PIC18F27J53T-I/SO