PIC18F27J53T-I/SO Microchip Technology, PIC18F27J53T-I/SO Datasheet - Page 457

no-image

PIC18F27J53T-I/SO

Manufacturer Part Number
PIC18F27J53T-I/SO
Description
28-pin, USB, 128KB Flash, 4KB RAM, 12 MIPS, 12-bit ADC, NanoWatt XLP 28 SOIC .30
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr
Datasheets

Specifications of PIC18F27J53T-I/SO

Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, LIN, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
2.15 V ~ 3.6 V
Data Converters
A/D 10x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3.8 KB
Interface Type
I2C, SPI, USART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
16
Number Of Timers
8
Operating Supply Voltage
2.15 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
28.5.2
The Fail-Safe Clock Monitor condition is terminated by
either a device Reset or by entering a power-managed
mode. On Reset, the controller starts the primary clock
source specified in Configuration Register 2H (with any
required start-up delays that are required for the oscil-
lator mode, such as the OST or PLL timer). The INTRC
oscillator provides the device clock until the primary
clock source becomes ready (similar to a Two-Speed
Start-up). The clock source is then switched to the
primary clock (indicated by the OSTS bit in the
OSCCON register becoming set). The FSCM then
resumes monitoring the peripheral clock.
The primary clock source may never become ready
during start-up. In this case, operation is clocked by the
INTRC oscillator. The OSCCON register will remain in
its Reset state until a power-managed mode is entered.
28.5.3
By entering a power-managed mode, the clock
multiplexer selects the clock source selected by the
OSCCON register. FSCM of the power-managed clock
source resumes in the power-managed mode.
If an oscillator failure occurs during power-managed
operation, the subsequent events depend on whether
or not the oscillator failure interrupt is enabled. If
enabled (OSCFIF = 1), code execution will be clocked
by the INTRC multiplexer. An automatic transition back
to the failed clock source will not occur.
If the interrupt is disabled, subsequent interrupts while
in Idle mode, will cause the CPU to begin executing
instructions while being clocked by the INTRC source.
28.5.4
The FSCM is designed to detect oscillator failure at any
point after the device has exited Power-on Reset (POR)
or low-power Sleep mode. When the primary device
clock is either the EC or INTRC modes, monitoring can
begin immediately following these events.
For HS or HSPLL modes, the situation is somewhat
different. Since the oscillator may require a start-up
time considerably longer than the FSCM sample clock
time, a false clock failure may be detected. To prevent
this, the internal oscillator block is automatically config-
ured as the device clock and functions until the primary
clock is stable (the OST and PLL timers have timed
 2010 Microchip Technology Inc.
EXITING FAIL-SAFE OPERATION
POR OR WAKE-UP FROM SLEEP
FSCM INTERRUPTS IN
POWER-MANAGED MODES
Preliminary
PIC18F47J53 FAMILY
out). This is identical to Two-Speed Start-up mode.
Once the primary clock is stable, the INTRC returns to
its role as the FSCM source.
As noted in Section 28.4.1 “Special Considerations
For Using Two-speed Start-up”, it is also possible to
select another clock configuration and enter an alternate
power-managed mode while waiting for the primary
clock to become stable. When the new power-managed
mode is selected, the primary clock is disabled.
28.6
For all devices in the PIC18F47J53 family of devices,
the on-chip program memory space is treated as a
single block. Code protection for this block is controlled
by one Configuration bit, CP0. This bit inhibits external
reads and writes to the program memory space. It has
no direct effect in normal execution mode.
28.6.1
The Configuration registers are protected against
untoward changes or reads in two ways. The primary
protection is the write-once feature of the Configuration
bits, which prevents reconfiguration once the bit has
been programmed during a power cycle. To safeguard
against
changes resulting from individual cell level disruptions
(such as ESD events) will cause a parity error and
trigger a device Reset. This is seen by the user as a
Configuration Mismatch (CM) Reset.
The data for the Configuration registers is derived from
the FCW in program memory. When the CP0 bit is set,
the source data for device configuration is also
protected as a consequence.
Note:
Program Verification and Code
Protection
unpredictable
The same logic that prevents false
oscillator failure interrupts on POR, or
wake-up from Sleep, will also prevent the
detection of the oscillator’s failure to start
at all following these events. This can be
avoided by monitoring the OSTS bit and
using a timing routine to determine if the
oscillator is taking too long to start. Even
so, no oscillator failure interrupt will be
flagged.
CONFIGURATION REGISTER
PROTECTION
events,
DS39964B-page 457
Configuration
bit

Related parts for PIC18F27J53T-I/SO