MC9S12G FREESCALE [Freescale Semiconductor, Inc], MC9S12G Datasheet - Page 434

no-image

MC9S12G

Manufacturer Part Number
MC9S12G
Description
Ignores external trigger. Performs one conversion sequence and stops.
Manufacturer
FREESCALE [Freescale Semiconductor, Inc]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12G128MLH
Manufacturer:
ROHM
Quantity:
1 200
Part Number:
MC9S12G128MLH
Manufacturer:
FREESCALE
Quantity:
1 500
Part Number:
MC9S12G128MLH
Manufacturer:
FREESCALE
Quantity:
1 500
Part Number:
MC9S12G128MLL
Manufacturer:
AVAGO
Quantity:
2 300
Part Number:
MC9S12G128MLL
Manufacturer:
FREESCALE
Quantity:
3 400
Part Number:
MC9S12G128MLL
Manufacturer:
FREESCALE
Quantity:
3 400
Part Number:
MC9S12G192CLL
Manufacturer:
FREESCALE
Quantity:
3 400
Part Number:
MC9S12GC128GFU2
Quantity:
69
Part Number:
MC9S12GC128MFUE
Manufacturer:
Freescale Semiconductor
Quantity:
135
Analog-to-Digital Converter (ADC10B16CV2)
13.3.2.6
Writes to this register will abort current conversion sequence and start a new conversion sequence. If the
external trigger function is enabled (ETRIGE=1) an initial write to ATDCTL5 is required to allow starting
of a conversion sequence which will then occur on each trigger event. Start of conversion means the
beginning of the sampling phase.
Read: Anytime
Write: Anytime
434
Module Base + 0x0005
CD, CC,
CB, CA
Reset
SCAN
MULT
Field
This document is valid for the S12G96 and the S12G128 device. All information related to other devices is preliminary.
3–0
SC
6
5
4
W
R
Special Channel Conversion Bit — If this bit is set, then special channel conversion can be selected using CD,
CC, CB and CA of ATDCTL5.
0 Special channel conversions disabled
1 Special channel conversions enabled
Continuous Conversion Sequence Mode — This bit selects whether conversion sequences are performed
continuously or only once. If the external trigger function is enabled (ETRIGE=1) setting this bit has no effect,
thus the external trigger always starts a single conversion sequence.
0 Single conversion sequence
1 Continuous conversion sequences (scan mode)
Multi-Channel Sample Mode — When MULT is 0, the ATD sequence controller samples only from the specified
analog input channel for an entire conversion sequence. The analog channel is selected by channel selection
code (control bits CD/CC/CB/CA located in ATDCTL5). When MULT is 1, the ATD sequence controller samples
across channels. The number of channels sampled is determined by the sequence length value (S8C, S4C, S2C,
S1C). The first analog channel examined is determined by channel selection code (CD, CC, CB, CA control bits);
subsequent channels sampled in the sequence are determined by incrementing the channel selection code or
wrapping around to AN0 (channel 0).
0 Sample only one channel
1 Sample across several channels
Analog Input Channel Select Code — These bits select the analog input channel(s).
coding used to select the various analog input channels.
In the case of single channel conversions (MULT=0), this selection code specifies the channel to be examined.
In the case of multiple channel conversions (MULT=1), this selection code specifies the first channel to be
examined in the conversion sequence. Subsequent channels are determined by incrementing the channel
selection code or wrapping around to AN0 (after converting the channel defined by the Wrap Around Channel
Select Bits WRAP3-0 in ATDCTL0). When starting with a channel number higher than the one defined by
WRAP3-0 the first wrap around will be AN16 to AN0.
ATD Control Register 5 (ATDCTL5)
0
0
7
= Unimplemented or Reserved
SC
0
6
Figure 13-8. ATD Control Register 5 (ATDCTL5)
Table 13-14. ATDCTL5 Field Descriptions
MC9S12G Family Reference Manual,
SCAN
Table 13-15
5
0
lists the coding.
MULT
0
4
Description
CD
0
3
Rev.1.01
CC
2
0
Freescale Semiconductor
Table 13-15
CB
0
1
lists the
CA
0
0

Related parts for MC9S12G