MC9S12G FREESCALE [Freescale Semiconductor, Inc], MC9S12G Datasheet - Page 596

no-image

MC9S12G

Manufacturer Part Number
MC9S12G
Description
Ignores external trigger. Performs one conversion sequence and stops.
Manufacturer
FREESCALE [Freescale Semiconductor, Inc]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12G128MLH
Manufacturer:
ROHM
Quantity:
1 200
Part Number:
MC9S12G128MLH
Manufacturer:
FREESCALE
Quantity:
1 500
Part Number:
MC9S12G128MLH
Manufacturer:
FREESCALE
Quantity:
1 500
Part Number:
MC9S12G128MLL
Manufacturer:
AVAGO
Quantity:
2 300
Part Number:
MC9S12G128MLL
Manufacturer:
FREESCALE
Quantity:
3 400
Part Number:
MC9S12G128MLL
Manufacturer:
FREESCALE
Quantity:
3 400
Part Number:
MC9S12G192CLL
Manufacturer:
FREESCALE
Quantity:
3 400
Part Number:
MC9S12GC128GFU2
Quantity:
69
Part Number:
MC9S12GC128MFUE
Manufacturer:
Freescale Semiconductor
Quantity:
135
Serial Communication Interface (S12SCIV5)
For an 8-bit data character, it takes the receiver 9 bit times x 16 RTr cycles + 10 RTr cycles = 154 RTr cycles
to finish data sampling of the stop bit.
With the misaligned character shown in
the count of the transmitting device is 10 bit times x 16 RTt cycles = 160 RTt cycles.
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit
character with no errors is:
For a 9-bit data character, it takes the receiver 10 bit times x 16 RTr cycles + 10 RTr cycles = 170 RTr cycles
to finish data sampling of the stop bit.
With the misaligned character shown in
the count of the transmitting device is 11 bit times x 16 RTt cycles = 176 RTt cycles.
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit
character with no errors is:
18.4.6.6
To enable the SCI to ignore transmissions intended only for other receivers in multiple-receiver systems,
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCI control register 2
(SCICR2) puts the receiver into standby state during which receiver interrupts are disabled.The SCI will
still load the receive data into the SCIDRH/L registers, but it will not set the RDRF flag.
The transmitting device can address messages to selected receivers by including addressing information in
the initial frame or frames of each message.
The WAKE bit in SCI control register 1 (SCICR1) determines how the SCI is brought out of the standby
state to process an incoming message. The WAKE bit enables either idle line wakeup or address mark
wakeup.
18.4.6.6.1
In this wakeup method, an idle condition on the RXD pin clears the RWU bit and wakes up the SCI. The
initial frame or frames of every message contain addressing information. All receivers evaluate the
addressing information, and receivers for which the message is addressed process the frames that follow.
Any receiver for which a message is not addressed can set its RWU bit and return to the standby state. The
596
This document is valid for the S12G96 and the S12G128 device. All information related to other devices is preliminary.
((160 – 154) / 160) x 100 = 3.75%
((176 – 170) /176) x 100 = 3.40%
Receiver Wakeup
Idle Input line Wakeup (WAKE = 0)
RT Clock
Receiver
MC9S12G Family Reference Manual,
Figure
Figure
Figure 18-29. Fast Data
Stop
18-29, the receiver counts 154 RTr cycles at the point when
18-29, the receiver counts 170 RTr cycles at the point when
Samples
Data
Rev.1.01
Idle or Next Frame
Freescale Semiconductor

Related parts for MC9S12G