MC9S08JM60CLH Freescale, MC9S08JM60CLH Datasheet - Page 150

MC9S08JM60CLH

Manufacturer Part Number
MC9S08JM60CLH
Description
Manufacturer
Freescale
Datasheet

Specifications of MC9S08JM60CLH

Cpu Family
HCS08
Device Core Size
8b
Frequency (max)
24MHz
Interface Type
SCI/SPI
Total Internal Ram Size
4KB
# I/os (max)
51
Number Of Timers - General Purpose
8
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
12-chx12-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
LQFP
Program Memory Type
Flash
Program Memory Size
60KB
Lead Free Status / RoHS Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08JM60CLH
Manufacturer:
FREESCALE
Quantity:
2 500
Part Number:
MC9S08JM60CLH
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08JM60CLH
Manufacturer:
FREESCALE
Quantity:
2 500
Part Number:
MC9S08JM60CLH
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC9S08JM60CLHE
Manufacturer:
AZBIL
Quantity:
1 000
Analog-to-Digital Converter (S08ADC12V1)
10.4.1
One of four clock sources can be selected as the clock source for the ADC module. This clock source is
then divided by a configurable value to generate the input clock to the converter (ADCK). The clock is
selected from one of the following sources by means of the ADICLK bits.
Whichever clock is selected, its frequency must fall within the specified frequency range for ADCK. If the
available clocks are too slow, the ADC do not perform according to specifications. If the available clocks
are too fast, the clock must be divided to the appropriate frequency. This divider is specified by the ADIV
bits and can be divide-by 1, 2, 4, or 8.
10.4.2
The pin control registers (APCTL3, APCTL2, and APCTL1) disable the I/O port control of the pins used
as analog inputs.When a pin control register bit is set, the following conditions are forced for the associated
MCU pin:
10.4.3
The ADC module has a selectable asynchronous hardware conversion trigger, ADHWT, that is enabled
when the ADTRG bit is set. This source is not available on all MCUs. Consult the module introduction for
information on the ADHWT source specific to this MCU.
When ADHWT source is available and hardware trigger is enabled (ADTRG=1), a conversion is initiated
on the rising edge of ADHWT. If a conversion is in progress when a rising edge occurs, the rising edge is
ignored. In continuous convert configuration, only the initial rising edge to launch continuous conversions
is observed. The hardware trigger function operates in conjunction with any of the conversion modes and
configurations.
10.4.4
Conversions can be performed in 12-bit mode, 10-bit mode, or 8-bit mode as determined by the MODE
bits. Conversions can be initiated by a software or hardware trigger. In addition, the ADC module can be
150
The bus clock, which is equal to the frequency at which software is executed. This is the default
selection following reset.
The bus clock divided by two. For higher bus clock rates, this allows a maximum divide by 16 of
the bus clock.
ALTCLK, as defined for this MCU (See module section introduction).
The asynchronous clock (ADACK). This clock is generated from a clock source within the ADC
module. When selected as the clock source, this clock remains active while the MCU is in wait or
stop3 mode and allows conversions in these modes for lower noise operation.
The output buffer is forced to its high impedance state.
The input buffer is disabled. A read of the I/O port returns a zero for any pin with its input buffer
disabled.
The pullup is disabled.
Clock Select and Divide Control
Input Select and Pin Control
Hardware Trigger
Conversion Control
MC9S08JM60 Series Data Sheet, Rev. 3
Freescale Semiconductor

Related parts for MC9S08JM60CLH