ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 164

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
12.5.2 SRAM with Data Retention
164
ATmega128RFA1
Table 12-2. Power states of microcontroller and radio transceiver
It is necessary to prevent any data loss of the SRAM when setting the CPU in one of
the DEEP_SLEEP modes. For that purpose the SRAM blocks will not be completely
switched off if the power-chain is disabled. The supply voltage for any individual SRAM
block is decreased to reduce its leakage current but guaranteeing its data retention.
The SRAM memory is divided into 4kByte blocks. Each block can be fully switched off
by setting the correspondent bit (PRRAM0 ... PRRAM3) in register PRR2 (see
Power Reduction Register 2" on page
switch off unused SRAM memory to save power and to reduce leakage currents.
Every SRAM block can be enabled again by resetting the respective bit (PRRAM0 ...
PRRAM3) of register PRR2. For each SRAM block n the bit DRTSWOK of the
corresponding register DRTRAMn shows the state of the DRT switch (logic high means
SRAM block can be accessed).
If the power-chain is switched off during deep-sleep modes, the content of the SRAM
blocks must be sustained. To provide data retention and lowest leakage current, a data
retention block controls the SRAM behavior during deep-sleep. Since the leakage
current is dramatically depending from the voltage of the SRAM, the supply voltage can
be decreased by enabling the data retention mode DRT.
Every SRAM block n is controlled by its assigned register DRTRAMn. The bit ENDRT
enables the data retention mode during deep-sleep. If this bit is zero, the respective
SRAM block is completely switched off.
Table 12-3. SRAM behavior while in deep-sleep mode
The lower 4-bit of the register DRTRAMn are reserved and should not be changed. The
reset value of the DRT voltage settings are preprogrammed during the manufacturing
process and need not to be changed.
AVR State
ON
ON
off
off
off
DEEP SLEEP
Notes:
ENDRT
1
0
1
0
(1…6)
(1,4…6)
(2,3)
Power-chain
ON
ON
off
off
1. Idle
2. Power Down
3. Power Save
4. ADC Noise Reduction Mode
5. Standby
6. Extended Standby
7.
Radio Transceiver State
ON
off (SLEEP or power reduction)
ON
off (SLEEP or power reduction)
off (SLEEP or power reduction)
SRAM supply voltage
1.8V (DVDD)
1.8V (DVDD)
Reduced
Disconnected
170). This enables the application software to
8266B-MCU Wireless-03/11
Powerchain
ON
ON
ON
ON
off
(7)
"PRR2 –

Related parts for ATMEGA128RFA1-ZU