ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 331

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
22 SPI- Serial Peripheral Interface
22.1 Features
22.2
8266B-MCU Wireless-03/11
Functional Description
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between the ATmega128RFA1 and peripheral devices or between several AVR
devices.
The ATmega128RFA1 SPI includes the following features:
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode
USART can also be used in Master SPI mode, see
The Power Reduction SPI bit, PRSPI, in
168
interface is shown in
The interconnection between Master and Slave CPUs with SPI is shown in
on
The SPI Master initiates the communication cycle when pulling low the Slave Select SS
pin of the desired Slave. Master and Slave prepare the data to be sent in their
respective shift Registers, and the Master generates the required clock pulses on the
SCK line to interchange data. Data is always shifted from Master to Slave on the Master
Out – Slave In, MOSI, line, and from Slave to Master on the Master In – Slave Out,
MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS
When configured as a Master, the SPI interface has no automatic control of the SS
This must be handled by user software before communication can start. When this is
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the
hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock
generator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable
bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may
continue to shift the next byte by writing it into SPDR, or signal the end of packet by
pulling high the Slave Select, SS
Register for later use.
When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated
as long as the SS
the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock
pulses on the SCK pin until the SS pin is driven low. As one byte has been completely
shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE,
in the SPCR Register is set, an interrupt is requested. The Slave may continue to place
new data to be sent into SPDR before reading the incoming data. The last incoming
byte will be kept in the Buffer Register for later use.
page 332. The system consists of two shift Registers, and a Master clock generator.
must be written to zero to enable SPI module. The block diagram of the SPI
__
pin is driven high. In this state, software may update the contents of
Figure 22-1 on
__
, line.
__
line. The last incoming byte will be kept in the Buffer
page 332.
"PRR0 – Power Reduction Register0" on page
"USART in SPI Mode" on page
ATmega128RFA1
Figure 22-2
__
369.
line.
331
__

Related parts for ATMEGA128RFA1-ZU