ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 253

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
18.6.2 Noise Canceller
18.6.3 Using the Input Capture Unit
18.7 Output Compare Units
8266B-MCU Wireless-03/11
clock cycles. Note that the input of the noise canceller and edge detector is always
enabled unless the Timer/Counter is set in a Waveform Generation mode that uses
ICRn to define TOP.
An input capture can be software-triggered by controlling the port of the ICPn pin.
The noise canceller improves noise immunity by using a simple digital filtering scheme.
The noise canceller input is monitored over four samples and all four must be equal for
changing the output that in turn is used by the edge detector.
The noise canceller is enabled by setting the Input Capture Noise Canceller (ICNCn) bit
in Timer/Counter Control Register B (TCCRnB). When enabled the noise canceller
introduces additional four system clock cycles of delay from a change applied to the
input to the update of the ICRn Register. The noise canceller uses the system clock and
is therefore not affected by the prescaler.
The main challenge when using the Input Capture unit is to assign enough processor
capacity for handling the incoming events. The time between two events is critical. The
ICRn will be overwritten with a new value if the processor has not read the captured
value in the ICRn Register before the next event occurs. In this case the result of the
capture will be incorrect.
When using the Input Capture interrupt, the ICRn Register should be read as early in
the interrupt handler routine as possible. Even though the Input Capture interrupt has
relatively high priority, the maximum interrupt response time is dependent on the
maximum number of clock cycles it takes to handle any of the other interrupt requests.
It is not recommended to use the Input Capture unit in any mode of operation where the
TOP value (resolution) is actively changed while counting.
Measurement of the duty cycle of an external signal requires that the trigger edge is
changed after each capture. Changing the edge sensing must be done as early as
possible after the ICRn Register has been read. After a change of the edge, the Input
Capture Flag (ICFn) must be cleared by software (writing a logical one to the I/O bit
location). For measuring frequency only, the clearing of the ICFn Flag is not required (if
an interrupt handler is used).
The 16-bit comparator continuously compares TCNTn with the Output Compare
Register (OCRnx). If TCNTn equals OCRnx the comparator signals a match. A match
will set the Output Compare Flag (OCFnx) at the next clock cycle of the timer. If
enabled (OCIEnx = 1), the Output Compare Flag generates an Output Compare
interrupt. The OCFnx Flag is automatically cleared when the interrupt is executed.
Alternatively the OCFnx Flag can be software-cleared by writing a logical one to its I/O
bit location. The Waveform Generator uses the match signal to generate an output
according to the Waveform Generation mode bits (WGMn3:0) and Compare Output
mode bits (COMnx1:0). The TOP and BOTTOM signals are used by the Waveform
Generator for handling the special cases of the extreme values in some modes of
operation (see
A special feature of Output Compare unit A allows it to define the Timer/Counter TOP
value i.e., the counter resolution. In addition to the counter resolution, the TOP value
defines the period time for waveforms generated by the Waveform Generator.
"Modes of Operation" on
page 257).
ATmega128RFA1
253

Related parts for ATMEGA128RFA1-ZU