ATMEGA128RFA1-ZU Atmel, ATMEGA128RFA1-ZU Datasheet - Page 456

IC AVR MCU 2.4GHZ XCEIVER 64QFN

ATMEGA128RFA1-ZU

Manufacturer Part Number
ATMEGA128RFA1-ZU
Description
IC AVR MCU 2.4GHZ XCEIVER 64QFN
Manufacturer
Atmel
Series
ATMEGAr

Specifications of ATMEGA128RFA1-ZU

Frequency
2.4GHz
Data Rate - Maximum
2Mbps
Modulation Or Protocol
802.15.4 Zigbee
Applications
General Purpose
Power - Output
3.5dBm
Sensitivity
-100dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
12.5mA
Current - Transmitting
14.5mA
Data Interface
PCB, Surface Mount
Memory Size
128kB Flash, 4kB EEPROM, 16kB RAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VFQFN, Exposed Pad
Rf Ic Case Style
QFN
No. Of Pins
64
Supply Voltage Range
1.8V To 3.6V
Operating Temperature Range
-40°C To +85°C
Svhc
No SVHC (15-Dec-2010)
Rohs Compliant
Yes
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
16 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
38
Number Of Timers
6
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVR128RFA1-EK1
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128RFA1-ZU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA128RFA1-ZUR
Manufacturer:
ON
Quantity:
56 000
30.6.1 Performing Page Erase by SPM
30.6.2 Filling the Temporary Buffer (Page Loading)
30.6.3 Performing a Page Write
30.6.4 Using the SPM Interrupt
30.6.5 Consideration While Updating BLS
456
ATmega128RFA1
and Page Write operation is addressing the same page. For an assembly code example
see
To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and R0 is ignored. The page address must be written to PCPAGE in the Z-register.
Other bits in the Z-pointer will be ignored during this operation.
• Page Erase to the RWW section: The NRWW section can be read during the Page
• Page Erase to the NRWW section: The CPU is halted during the operation.
To write an instruction word, set up the address in the Z-pointer and data in R1:R0,
write “00000001” to SPMCSR and execute SPM within four clock cycles after writing
SPMCSR. The content of PCWORD in the Z-register is used to address the data in the
temporary buffer. The temporary buffer will be auto-erased after a Page Write operation
or by writing the RWWSRE bit in SPMCSR. It is also erased after a system reset. Note
that it is not possible to write more than one time to each address without erasing the
temporary buffer.
If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded
is still buffered.
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits in the
Z-pointer must be written to zero during this operation.
• Page Write to the RWW section: The NRWW section can be read during the Page
• Page Write to the NRWW section: The CPU is halted during the operation.
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt
when the SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used
instead of polling the SPMCSR Register in software. When using the SPM interrupt, the
Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is
accessing the RWW section when it is blocked for reading. How to move the interrupts
is described in
Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock bit11 un-programmed. An accidental write to the Boot Loader itself
can corrupt the entire Boot Loader, and further software updates might be impossible. If
it is not necessary to change the Boot Loader software itself, it is recommended to
program the Boot Lock bit11 to protect the Boot Loader software from any internal
software changes.
Erase.
Write.
"Simple Assembly Code Example for a Boot Loader" on
"Interrupts" on page
212.
page 459.
8266B-MCU Wireless-03/11

Related parts for ATMEGA128RFA1-ZU